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Abstract

Object recognition and pose estimation is a crucial task towards scene un-
derstanding and highly efficient, flexible and reliable autonomous systems.
Traditionally, most research efforts in object recognition have been focused
on the detection and classification of objects in two-dimensional images, in-
cluding clutter, occlusion and different illumination scenarios. Despite reach-
ing a high level of robustness, specially using machine learning approaches,
these methods face the problem from a 2D point of view rather than pro-
viding the precise rotation and position of the objects in the 3D space. In
this context, methods based on three-dimensional scene data appeared as
the first solutions to robustly solve this 6D pose estimation problem for dif-
ferent complex scenarios, showing a promising level of performance with the
best results so far. However, the problem has not yet been solved, with
highly cluttered scenes and occlusions still remaining challenging cases for
state-of-the-art methods. This thesis proposes and analyses novel solutions
based on the top performing Point Pair Features voting approach to define
a novel feature-based method for robust recognition and 6D pose estimation
of partially occluded objects in cluttered scenarios.

The research considers the drawbacks of current approaches to define a
novel discriminative preprocessing solution, an improved matching method,
a more robust clustering and several view-dependent postprocessing steps.
Focusing on the challenging occluded cases, the research also proposes a in-
novative solution based on top-down visual attention and color cues to boost
performance in partially visible cases. The performance of the proposed
method is evaluated against 14 state-of-the-art solutions on a comprehensive
publicly available benchmark with real-world scenarios under clutter and
occlusion. The results shows an outstanding improvement for all datasets
outperforming all tested state-of-the-art solutions. The validity of the pro-
posed approach is shown for different types of objects and scenarios, specially
boosting performance for relatively low visible cases extending the capacities
of current 6D pose estimation methods. Finally, the practical value of the
research is demonstrated by defining and testing a novel automatic offline
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programming solution for intelligent manufacturing. Specifically, an auto-
matic robot integration system that exploits the robustness and benefits of
the recognition and pose estimation is proposed. The recognition method
provides the workpiece pose information to a flexible offline programming
platform, efficiently solving, in an autonomous way, a critical problem for
robot integration in manufacturing scenarios. The system is tested on a
series of experiments on real-world scenarios and compared against differ-
ent existing solutions, showing the robustness and benefits of the method.
Overall, the system shows the value and potential of a cutting edge object
recognition method to define innovative intelligent solutions towards highly
advanced autonomous systems.

1il



Acknowledgements

First of all I would like to express my deepest gratitude to Prof. Jerry Lin for
his continued support, supervision and guidance without which this thesis
would not have been possible. I really appreciate his invaluable help, patience
and kindness during all these years and his efforts to make foreigner students
feel at home. I would also like to thank very much Dr. Robert Marti for
his help and his invaluable and exemplary supervision work. Additionally,
I would like to thank all the lab members and friends I made during this
journey, who have helped me in so many ways. Finally, I would like to thank
my family for their continued support, endless patience and love.

v



Contents

%

Abstract

Acknowledgements

List of Figures

List of Tables

1

Introduction

1.1 Background and Motivation . . . . ... ... ... .. ... ..
1.2 Visual Object Recognition . . . . . . ... ... .. ... ...
1.3  Objectives and Scope of Study . . . . . . . .. ... ... ...
1.4 Structure of the Thesis . . . . . . . . ... ... ... .. ...
1.5 Publications . . . . . . ...

The Point Pair Features Voting Approach

2.1 Imtroduction . . . . . . . ... ..
2.2 TheBasics. . . . . . . . . ...
2.3 Related Methods . . . . . .. ... ... ... ... ... ..

A Novel Approach Based on Point Pair Features
3.1 Method’s Overview . . . . . . . ... ... ... ...
3.2 Preprocessing . . . . . ...
3.2.1 Normal Estimation . . . . . . ... ... ... .....
3.2.2 Downsampling . . ... ... .. ... ...
3.3 Feature Extraction . . . . . ... ... ... ...
3.4 Matching . . . .. ..
3.5 Hypothesis Generation . . . . . . ... ... .. ... ... ..
3.6 Clustering . . . . . .. ..
3.7 Postprocessing . . . . ... ..o Lo

ii

iv

vii

ix



3.7.1 Rescoring and Refining . . . . . .. ... ... ... .. 24

3.7.2  Hypothesis Verification . . . . .. ... ... ... ... 25
4 Facing Occlusion with Visual Attention and Color Cues 27
4.1 The Occlusion Problem . . . . . .. ... ... ... ... ... 27
4.2 Visual Attention . . . . . . ... ... 28
4.3 Color Cues to Improve Matching . . . ... . ... ... ... 29
4.4 A Novel Solution for Occlusion . . . . . ... ... ... ... 29
4.4.1 Attention-Based Matching Using Color Cues . . . . . . 30
4.4.2 Color Weighted Matching . . . . . ... ... .. ... 32
4.4.3 Color Models and Distance Metrics . . . . . . ... .. 34

5 Evaluation and Results: Analysis on a Comprehensive Pose
Estimation Benchmark 36
5.1 The BOP Pose Estimation Benchmark . . . .. ... ... .. 36
5.2  Method’s Step and Parameter Analysis . . . . . ... ... .. 37
5.2.1 Normal Clustering, Matching and Rendered View . . . 37
5.2.2 Rescoringand ICP . . . ... ... ... ... . .... 39
5.2.3 Alpha Value for Different Color Spaces . . . . . . . .. 40
5.2.4  Omega Weight Factor . . . .. ... ... ... .... 41
5.3 Performance Evaluation Using Depth . . . . . .. .. ... .. 43
5.4 Performance Evaluation Using Depth and Color . . . . . . .. 47

6 Case Study: Automatic Robot Path Integration with Offline
Programming and Range Data 52
6.1 Introduction . . . . . ... .. ... ... 52
6.2 System Overview . . . . . . . . . .. .. ... .. ..., 56
6.2.1 Kinect Sensor . . . . ... ... o7
6.2.2 Off-line Programming Platform . . . .. ... ... .. 58
6.3 AOLP Integration . . . . . ... ... .. ... ... ..., 58
6.3.1 Object Recognition . . . . . . .. ... .. ... .... 59
6.3.2 Workpiece Transformation . . . . . . . ... ... ... 60
6.3.3 Path generation by OLP . . . . . .. .. ... ... .. 61
6.4 Experimental Results . . . . . . .. ... ... ... ...... 62
6.4.1 FEvaluation of the System Error . . . . . .. ... ... 63
6.4.2 System Robustness Analysis . . . . . . ... ... ... 67
6.4.3 Comparison and Discussion . . . . .. ... ... ... 70
7 Conclusions 73
Bibliography 75

vi



List of Figures

2.1
2.2

2.3

24

3.1
3.2

3.3

3.4

3.5

4.1

4.2

5.1
0.2

5.3

5.4

Point Pair Feature definition . . . . . . . . . .. .. ... ...
Representation of the modeling and matching steps of the
Point Pair Features voting approach . . . . . .. . ... ...
Representation of the local coordinate (LC) system used by
the Point Pair Features voting approach . . . . .. .. .. ..
Representation of the LC « angle definition from two corre-
sponding pairs . . . . . .. ..

Proposed method pipeline . . . . . ... ... ... ......
Representation of the normal clustering voxel-grid downsam-
pling . . . . . .
One-dimensional example of the noise effect on the lookup
table during matching with four different strategies . . . . . .
Model surface points classification regarding its distance to
the scene data from the camera view . . . . . .. .. .. ...
Examples of the extraction of the object model silhouette and
the sceneedges . . . . . . . . . ...

The Point Pair Features voting approach global object defini-
tion from a single reference point . . . . . .. ..o L
Representation of the attention-based reference points selec-
tion method . . . . . . .. ..o L

Performance comparison between different approaches . . . . .
Performance comparison using different post-processing pa-
TAMELErS . . . . . . Lo e e
Evaluation of different color spaces and metrics combinations
with respect to the alpha value. . . . . .. ... ... ... ..
Results obtained using different color and metric cases for the
best alpha with respect to the object visibility level . . . . . .

vii



3.5

5.6
2.7

5.8

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

6.10
6.11

6.12
6.13
6.14
6.15

Recognition rate for each LM-O dataset object using different
color space and metric cases for the best alpha with respect
to the object visibility level . . . . . . .. .. ... ... ...
Evaluation of omega parameter . . . . . ... ... ... ...
Proposed method results in scenes from the BOP benchmark
datasets . . . . . . ...
Method results in highly occluded scenes from the LM-O
datasets . . . . . . ...

Architecture of the proposed platform . . . . ... . ... ..
Kinect’s hardware . . . . . . . . . . ... ... ... ...
Flowchart of the AOLP platform. . . . . . .. ... ... ...
Flowchart of the 6D pose estimation module. . . . . . . . . ..
Camera and object position with respect to the robot.

Steps to generate the robot path by using the OLP platform .
System’s execution steps. . . . . .. ...
Object and scene representations . . . . . . .. .. ... ...
Relative error of the system with respect to the industrial
manipulator for Smm steps. . . . . ...
Steps to compare the performance of the platform. . . . . . .
Virtual and real-world results for one trajectory generated by
the AOLP system. . . . ... .. ... ... . ... ......
Different tested scene illumination levels. . . . . . . . . .. ..
System error for different illumination levels. . . . . . . . . ..
Tested objects with different surface materials. . . . . . . . ..
System error for objects made by different types of material. .

viil

69



List of Tables

5.1 BOP benchmark dataset . . . . ... ... ... ... ... .. 37

5.2 Recall scores for the BOP Benchmark using depth only . . . . 46

5.3 Recall scores for the Linemode Occlusion dataset using color
information . . . .. ..o Lo 48

5.4  Recall scores for the BOP Benchmark using color information 50

6.1 Relative error with respect to the industrial manipulator for

S5mm steps on X, Y and Z robot axis . . . ... .. ... ... 65
6.3 Overall absolute error for all poses, with 10 test per pose using

4 reference point . . . .. ..o L 66
6.2 Absolute error per pose, with 10 tests per pose using 4 refer-

ence points. Results inmm. . . . .. ... ... ... ..... 66
6.4 Comparison table between different methods’ features for au-

tomatic industrial manufacturing on 3D objects . . . . . . .. 71

iX



Chapter 1

Introduction

1.1 Background and Motivation

Since the origins of visual image processing, object recognition has been
considered as an essential part of visually-guided intelligent systems, rep-
resenting one of the main motivations and research directions in the com-
puter vision field [7]. In this direction, most research efforts in computer
vision have been focused on the detection and classification of objects in two-
dimensional images, including clutter, occlusion and different illumination
scenarios. Although these methods have reached an astonish level of ro-
bustness [39, 92|, their capabilities have been focused on understanding the
scene in terms of object classification and recognition with binary outputs
and regions of interest (ROI), facing the problem from a 2D point of view,
rather than inferring the precise rotation and position of specific objects in
the 3D space. This spatial problem, commonly known as 3D, 6DOF, 6D
pose estimation or pose recovering, is intrinsically related with the complex-
ity and variability of the 3D nature of the space [105] and still remains a
long challenging task in the computer vision field. In general, although sev-
eral types of pose invariant recognition methods for monocular images were
presented, few literature focused on explicitly solving the 6D pose estima-
tion problem, e.g. [24, 68, 69], which mainly relied on polyhedral objects and
gradients extracted from highly textured cases. In this line, only recently,
methods based on template matching [43, 45] and machine learning [57] have
shown promising results solving the problem for different types of objects in
challenging scenarios. In another direction, the introduction of range data
applied to object recognition in the late 70’s [80] opened a new research path
by providing additional depth information and data sources robust to illumi-
nation changes [95]. These methods, based on three-dimensional scene data,



were the first solutions to robustly solve the 6D pose estimation problem
for different complex scenarios and still remains the best approaches to the
problem. Before the 90’s, most solutions focused on the detection of objects
within a specific narrow domain of simple solids, polygonal or polynomial
shapes [16]. Since then, the increasing computational power and the intro-
duction of more accessible sensor technologies have motivated new branches
and research directions, continuously enlarging the object domain and the
complexity of the scenes. Recently, different methods based on feature-based
approaches [37, 103], template matching [43, 48] and machine learning [21, 58|
have obtained promising results on several challenging datasets, including
more different types of objects and more complex scenarios. However, these
methods are still severely effected by highly cluttered scenes and, in special,
occluded cases. On the top of that, the real applicability and performance
of the methods remains unclear with only few methods evaluated on prac-
tical applications, which mostly focus on simple pick-and-place tasks and
constrained environments.

Therefore, object recognition is still a challenging problem for which novel
solutions more robust to clutter and occlusion are required. These solutions
should be evaluated on public and more comprehensive scenarios under a
common criteria providing a clear picture of their comparative performance.
Ideally, these solutions should be also evaluated and analyzed for practical
cases, showing their applied value in real-world scenarios.

1.2 Visual Object Recognition

Visual object recognition is a fundamental part of scene understanding and
has always been a main research direction in computer vision [7]. As a natural
capability of the human visual system, this high-level vision process repre-
sents a key part of advanced autonomous systems that can perform highly
complex tasks, opening the door to a wide range of potential applications
from household to industrial environments up to space exploration. Some
examples include industrial vision [73], medical imaging [20] or autonomous
navigation [35]. The difficulties of the problem, intrinsic in the complex-
ity of the human visual perception, can be seen reflected on the wide range
of existing literature, diverging in multiple approaches and research direc-
tions, including the dimensionality of the data (i.e 2D or 3D), object domain
(e.g. polygonal, polynomial, free-form, rigid or non-rigid), scene complexity
(e.g. single or multiple instances, single or multiple objects, with or with-
out clutter and occlusion) and system task (e.g. detection, categorization or
localization), coexisting different problems definitions and nomenclatures [7].



The problem of recognizing a set of objects in a given scene and estimating
their location has been a matter of intense study from the origins of computer
vision in early 60’s [89]. Based on the problem definition presented by Besl
and Jain [16], the autonomous single-arbitray-view 3D object recognition
problem can be simplified and summarized in 3 parts:

1. The targeted objects are examined and respective models are created.

2. Given a single scene view, the following problems are solved for each
modeled object:

(a) Determine the existence of the object in the scene.

(b) If the object exists, determine the number of instances in the
scene.

(c) For each instance, determine the position and rotation w.r.t a
given coordinate system.

3. An optional learning step of new object models from the unknown parts
of the scene can be applied. This capacity is commonly referred to as
plasticity.

This definition reflects that object detection and position and rotation
estimation in the 3D space, i.e special euclidean group SE(3), from now on
referred simply as ”6D pose” or "pose”; are basic tasks of the complete three-
dimensional object recognition problem.

In this context, pose estimation of three-dimensional objects in two-
dimensional images faces difficulties regarding viewing position, photometric
effects, object setting and, for non-rigid cases, changing shape [105]. As an al-
ternative solution, the introduction of range data in object recognition in late
70’s [80] opens a new research branch with the inclusion of depth information,
increasing robustness against some of the aforementioned difficulties. Never-
theless, before the 90’s, most of the proposed methods for three-dimensional
object recognition on range data focused on a very restrictive object domain
and simple scenarios. The reader can refer to [16] for a survey of the existing
methods before 1985. Since then, the introduction of more affordable and
multimodal sensors [95] and growing computation power allow a continuous
emergence of novel and more robust solutions, increasing the object domain
and complexity of the scenes. The reader can refer to [8, 55, 76, 97| for
additional surveys of methods and techniques that appeared before 2005.
Nowadays, the state-of-the-art of free-form object recognition using range or
multimodal data, can be divided in three main categories: Feature-based,
template matching and machine learning methods.



The object recognition problem and its variants can be tackled, at its ba-
sis, as a matching problem between a system’s internal object representation,
i.e. object model, and the scene data [16]. For an effective matching, the
representations must be somehow corresponding to the real represented data
inherent features, such as color or surface characteristics [97]. These object
models are usually generated by sensor data or CAD systems. Commonly,
the range of techniques involving a prior knowledge provided through an
object model follows the same paradigm, known as model-based vision sys-
tem [8, 14]. Using range data, the object pose estimation problem relying on
surface information can be seen as an specific case of the surface matching
problem [15]. In this context, the matching between the object and the scene
can be treated as the correspondence problem between simple point repre-
sentations, as a rigid point set registration problem, or using more complex
representations, such as meshes, parametric surfaces or solids. A straight
forward solution to this matching problem was proposed by minimizing dis-
tance error with point set surface fitting approaches, like the Iterative Closes
Point (ICP) with its variants [17, 29, 91]. These methods show high preci-
sion and efficiency but require a coarse estimation of the object pose, as they
may converge to a local minimum. For a global matching solution, where the
searching space is prohibitively large, the correspondences commonly rely on
the similarity of quantitative values from symbolic descriptors, representing
a group or region of data forming a distinguishable element, referred to as
features [16]. Indeed, this description defines a higher level representation of
the object model. Notice that the term model or object model will be used
in this thesis to indistinctly refer to all levels of object representation.

In the literature, we can differentiate two main categories of feature-based
approaches with their distinctive pipelines; local and global. Local feature-
based methods are based on matching descriptors of local surface charac-
teristics, usually extracted around selected keypoints for efficiency reasons.
Among their principal attributes, there is the implicit robustness against
occlusion and clutter resulting from the local nature of the description. In
turn, these local properties make them sensitive to noise and to the relative
size of the surface features. The reader can refer to the work presented by
Guo. et al. [42] for a comprehensive state-of-the-art survey of these meth-
ods. Global features, on the other hand, follow a different pipeline for which
the whole object surface is described by a single or small set of descriptors.
For most approaches, each global feature describes each of the views of the
object, named view-dependent descriptors. The global nature of these de-
scriptors implies the separation of the described surface from their surround-
ings, which introduces a segmentation step on the common global feature
recognition pipeline. These properties make global feature approaches more
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robust to noise and aware of the object structural information, i.e. spa-
tial arrangement and delimitation of surface characteristics, but also make
them difficult to use on cluttered and occluded scenes. Some examples of
these features are the Extended Gaussian Images(EGI) [52], the Viewpoint
Feature Histogram(VFH) [93], the Ensemble of Shape Function(ESF) [111]
and the Clustered Viewpoint Feature Histogram(CVFH) [5]. As a particular
case, Drost et al. [37] presents in 2010 one of the most successful and power-
ful feature-based methods combining a global modeling and local matching
stages. The method joins benefits of a global object definition and local
matching pipeline by efficiently matching and grouping pairs of points using
feature quantization and two-dimensional Hough transform-like correspond-
ing grouping. The approach showed an outstanding performances with a
promising trade-off between recognition rates and speed. Later, the solution
was improved by several authors [18, 30, 36, 47, 60] and its features were
studied in detail by [59].

In another direction, template matching techniques, extended from two-
dimensional computer vision, have also been proposed for RGB-D data. Ba-
sically, these techniques rely on finding the matching of an image’s part
to a pre-defined template, usually following a blind-search approach. These
methods compute a single similarity measure between the template and scene
data for each step of a sliding window on the scene data, selecting the high-
est obtained value above a given threshold as positive matching case. Most
research efforts on these methods have been focused on improved similarity
measures, specially more robust to illumination, clutter and occlusion, and
faster searching strategies, which can efficiently reduce the search space. For
two-dimensional images, approaches relying on image gradients [45, 99] have
provided relatively good results under occlusion and illumination changes.
Based on these methods, Hinterstoisser et al. [44] proposed a template match-
ing technique extended to RGB-D data using quantized surface normals as
a depth cue. In a similar fashion, recently, Hodan et al. [50] applied the con-
cept of multimodal matching of [44] on an efficient cascade-style evaluation
strategy.

Techniques based on supervised machine learning have been also used
for object recognition and pose estimation on RGB-D data. Diverging from
traditional approaches, these methods do not match model and data repre-
sentations through a fixed strategy but learn an integrated mapping from
the data to the recognition output using training data. Decision trees, Ar-
tificial Neural Network (ANN) and Support Vector Machines (SVM) are
among some of the common branches of techniques used in supervised learn-
ing [19, 62]. Following the same trend as in other fields, new promising
methods based on machine learning have raised within the 6D pose estima-



tion research in recent years. Brachmann et al. [22] introduced a method
for object pose estimation using a random forest to classify the pixels of a
RGB-D image. Tejani et al. [101] adapted the multimodal template of [44]
as a scale-invariant patch representation integrated into a random forest. Fi-
nally, Kehl et al. [58] presented a method based on Convolutional Neural
Network (CNN) using RGB-D patches. Overall, these method are relatively
fast during matching while its performance heavily relies on the quality and
relevance of the training data.

1.3 Objectives and Scope of Study

The main objectives of this research are to study, define, implement and

analyze novel and better real-world applicable solutions for recognition and

pose estimation of objects. These solutions should provide higher robustness

for different types of scenarios, focusing on the yet-to-be-solved cases for

partially occluded objects in clutter scenes. Overall, the research should

propose and develop practical solutions that are robust, fast and generic.
In particular, the thesis focused on the following objectives:

o Understanding the recognition and pose estimation problem, its chal-
lenges, different solutions and best existing approaches.

« Proposing novel and practical solutions for solving current drawbacks,
improving, outperforming and extending the capabilities of existing
approaches.

o Analyzing the performance of the proposed solutions on publicity avail-
able datasets against different state-of-the-art methods. Solutions
should be evaluated in different types of scenarios following a common
and standard criteria.

o Defining and developing practical systems, showing their performance
on real-world scenarios by solving existing problems with visually-
guided autonomous solutions.

Based on the main research direction and research objectives, the scope
of this research is limited only to the recognition of rigid (or solid) 3D objects
with texture, size and position within the used sensor technology, resolution
and working range capacities. The solutions are studied and developed for
depth and multimodal data using standard point cloud and mesh represen-
tations. The target recognition range includes from common household to
industrial 3D objects on different types of challenging scenes with illumina-
tion changes, clutter and occlusion.



1.4 Structure of the Thesis

The thesis is divided in 7 chapters as follows. Chapter 1, introduces the the-
sis background and motivation, the visual object recognition problem from
a 3D perspective, the objectives and scope of study, the structure of the
thesis and publications. Chapter 2 introduces in detail the Point Pair Fea-
ture voting approach and overviews its related methods. Chapter 3 defines a
novel feature-based method, analyzing and introducing several new solutions
based on the Point Pair Feature voting approach. Chapter 4 faces the oc-
clusion problem proposing an innovative solution based on visual attention
and color cues. Chapter 5 analyses the proposed approached on a compre-
hensive and publicly available benchmark, evaluating the proposed solution
against 14 other state-of-the-art methods under a common and fixed evalua-
tion criteria. Chapter 6 shows the practical value of the proposed method by
presenting a case study where the method is integrated on an automated of-
fline programming platform for intelligent manufacturing. Finally, Chapter
7 provides the conclusions of the thesis.

1.5 Publications

Parts of this thesis contains material previously published in the following
publications:

Title: 6D pose estimation using an improved method based on point pair
features

Authors: Joel Vidal, Chyi-Yeu Lin and Robert Marti

Published in: 2018 4th International Conference on Control, Automation
and Robotics (ICCAR)

DOI: 10.1109/ICCAR.2018.8384709

Title: A Method for 6D Pose Estimation of Free-Form Rigid Objects Using
Point Pair Features on Range Data

Authors: Joel Vidal, Chyi-Yeu Lin, Xavier Lladé and Robert Marti
Published in: Sensors 2018, 18(8), 2678

DOI: 10.3390/s18082678



Title: Automatic robot path integration using three-dimensional vision
and offline programming

Authors: Amit Kumar Bedaka, Joel Vidal, Chyi-Yeu Lin

Published in: The International Journal of Advanced Manufacturing
Technology (On press)

Note: This article is the result of a joint work with Amit Kumar Bedaka.
Both, Amit and Joel, contribute equally to the research.

The author has also collaborated in the following publication:

Title: BOP: Benchmark for 6D Object Pose Estimation

Authors: Tomas Hodan, Frank Michel, Eric Brachmann, Wadim
Kehl,Anders Glent Buch,Dirk Kraft, Bertram Drost, Joel Vidal, Stephan
Ihrke, Xenophon Zabulis, Caner Sahin, Fabian Manhardt, Federico
Tombari, Tae-Kyun Kim, Jiti Matas, Carsten Rother

Published in: Computer Vision —ECCV 2018. Lecture Notes in
Computer Science, vol 11214. Springer

DOI: 10.1007/978-3-030-01249-6_ 2



Chapter 2

The Point Pair Features Voting
Approach

2.1 Introduction

First introduced by Drost et al. [37], the Point Pair Features voting approach
is a feature-based solution combining a global modeling and a local matching
stage within a local pipeline using sparse features. The approach represents
a compromised solution between the local and global approaches, showing
a promising trade-off between recognition rates and speed. The approach
unique characteristics, outstanding performance and potential defines the
basis of the proposed solutions. This chapter introduces the basics of the
approach and overviews the most important related methods.

2.2 The Basics

Using point cloud representations of oriented points (i.e., points with nor-
mals), the method relies on four-dimensional features extracted from pairs of
points (from now on “point pairs” or simply “pairs”) to globally describe the
whole object from each surface point in a way that later the object can be
locally matched with the scene. This four-dimensional feature, called Point
Pair Feature or PPF, defines an asymmetric description between two oriented
points by encoding their relative distance and normal information, as shown
in Figure 2.1. In detail, having a set of points in the 3D space M C R3 rep-
resenting the model object, for a given 3D point m, € M, called reference,
and a given 3D point m, € M, named second, such that m, # mg, with
their respective unit normal vectors 7, and 7,,,, a model four-dimensional



feature f™ € (F™ C R%) is defined by Equation (2.1),
Ers(me, mug, 5 i) = | Hcﬂb AL J), A CZ)’ L (v, o) 1T, (2.1)

where d = (mg, —my,, mg, —m,.,,my, —m,. ) and £(d, E) is the angle between
the vector @ and b. In the same way, having a set of point § C R? representing
the scene data, the function F,, can be applied to compute a scene PPF using
a pair of scene points s,, s, € S such that s, # s,, with their respective unit
normal vectors 1, and 7, . Notice that, if the object model has | M| points,
the total number of features is defined by |F™| = |[M|* — |[M|. In order
to reduce the effect of this square relation on the method performance, the
input data of both model and scene are downsampled with respect to the
model size, effectively decreasing the complexity of the system.

Qul
[}

Figure 2.1: Point Pair Feature definition for a model’s point pair (m,., ms).

The method can be divided into two main stages: modeling and matching.
On modeling, the global model descriptor is created by computing and saving
all the possible model pairs with their related PPF. During the matching
stage, the model pose in the scene is estimated by matching the scene pairs
with the stored model pairs using the PPF. This matching process consists
of two distinctive parts: (1) find the correspondence between the pairs using
the four-dimensional features and (2) group the correspondences generating
hypotheses’” poses.

The correspondence problem between similar point pairs is efficiently
solved by grouping the pairs with the same quantized PPF on a hash table or,
alternatively, a four-dimensional lookup table. Quantizing the feature space
defines a mapping from each four-dimensional space element to the set of all
point pairs that generate this specific feature. In particular, for the object
model, this mapping from quantized features to sets of model pairs defines
the object model description expressed by the function L : Z* — P(Mp,),
where M, = {(m,,ms) | my,ms € M,m, # ms} and P(X) represents the
power set of X. In other words, point pairs that generate the same quantized
PPF are grouped together on the same table position pointed by their com-
mon quantized index, effectively grouping pairs with similar features. This
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process of model construction is done during the modeling stage, as shown
in Figure 2.2a for three sample point pairs. Using this model description,
given one scene pair, similar model pairs can be retrieved by accessing a ta-
ble position pointed by the PPF quantized index. The quantization index is
obtained by a quantization function Q : R* — Z* using the step size Ay
for the first dimension and Ag,4. for the remaining three dimensions. The
quantization step size will bound the similarity level, i.e., correspondence
distance, between matching features, and hence point pairs. Defining a func-
tion N : R® — R3 that computes a normal from a point, the correspondence
matching subset of model pairs A C M, for a given scene pair (s, s;)
and its related quantized feature f* = Q(F,4(s,,ss,Ms,,Ms,)) is defined by
Equation (2.2):

L(f*) = {(ms,my) € My | Q(Ers(my,mg, N(m,), N(my))) = f°}. (2.2)

:
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Figure 2.2: Representation of the modeling and matching steps of the Point
Pair Features voting approach. (a) modeling example for three point pairs
from the model; (b) matching example for one point pair from the scene.

From each scene-model point pair correspondence, a 6D pose transforma-
tion, or hypothesis, can be generated. Specifically, for a corresponding point
pair (m,,ms) € A, the matched reference points (s,,m,) and their normals
(s, , T, ) constrain five degrees of freedom, aligning both oriented points,
and the second points (ss,ms), as long as they are non-collinear, constrain
the remaining degree of freedom, which is a rotation around the aligned nor-
mals. However, the discriminative capability of a single four-dimensional
feature from two sparse oriented points is clearly not enough to uniquely
encode any surface characteristic, producing wrong correspondences. There-
fore, the method requires a group of consistent correspondences to support
the same hypothesis. Actually, the more correspondences support a single
pose, the more likely this will be. In this regard, grouping consistent point
pair correspondences, or, alternatively, 6D poses obtained from correspond-
ing pairs have a high dimension complexity. In order to effectively solve
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this problem, a local coordinate, which we will refer to as LC, is used to
efficiently group the poses within a two-dimensional space. As with two cor-
responding pairs, for a given scene point s; € S that belongs to the object
model, a 6D pose can be defined by only using one corresponding model
point m; € M and a rotation angle o around their two aligned normals,
i.e., ng and Ny, In this way, for the scene point s;, a 6D pose transfor-
mation candidate Ty, € SE(3) can defined by the LC represented by the
parameters (m;,«), as shown in Figure 2.3. To solve this transformation,
both points and normals are aligned respectively with the origin and z-axis
of a common world coordinate system {W}. Taking the scene point, this
alignment can be expressed by the transformation WTs = (R,t) € SE(3).
The rotation that aligns the normal vector n,, to the x-axis é, is defined

fg; X €x
[[72s; X Eal|”
Therefore, the rotation matrix R € SO(3) can be efficiently found using the
Rodrigues’ rotation formula [33]. In turn, the translation ¢ € R? is defined
by t = —Rs;. Exactly in the same way, the transformation Ty, € SE(3)
is found for the model point m; and its normal 7,,,. Using these two trans-
formations and the rotation angle, the 6D pose for a given object instance is

defined by Equation (2.3):

by the axis-angle representation 00, where 0 = Z(ns,, é,) and 0 =

STy = (WTs) ™ Ry(a)V Ty, (2.3)

where R, () € SO(3) represents a rotation of 5 angle around the z-axis. Us-
ing the LLC, the correspondence grouping problem can be individually tackled
for any scene pair created from s; by grouping the corresponding model pairs
in a two-dimensional space using the parameters (m;, a).

i

(a) (b) (c)

Figure 2.3: Representation of the local coordinate (LC) system used by the
Point Pair Features voting approach; (a) scene oriented point; (b) corre-
sponding object model oriented point; (c) alignment of the model with the
scene by using the two oriented points and the a angle.
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During grouping and hypothesis generation, for every reference scene
point s;, the method intends to find the LC, ie., (m;,«), which defines
the best fitting model pose on the scene data or, in other words, that max-
imizes the number of pairs correspondences that support it. This corre-
spondence grouping problem is solved by defining a two-dimensional vot-
ing table or accumulator, in a Generalized Hough Transform manner, rep-
resenting the parameter space of the LC, where one dimension represents
the corresponding model point m; and the other the quantized rotation an-
gle a. In particular, for each possible scene pair generated from s;, i.e.,
(Sry8s) € {(sk,81) | Sk,s1 € S, sk # 81,8 = Si}, a LC will be defined by a
corresponding pair (m,., m,) reference point, i.e., m; = m,, and the rotation
angle « defined by the two second points (ss, ms). The corresponding model
pairs are retrieved from the lookup table using the quantized PPF and, for
each obtained LC, a vote is cast on the table, as represented by Figure 2.2b
for a single pair. After all pairs are checked, the peak of the table represents
the most supported LC, and hence the most likely pose, for this specific s;
point. This process is applied to all or, alternatively, a fraction of the scene
points, obtaining a set of plausible hypotheses.

To increase the efficiency of the voting part, which requires to compute
the o angle for each pair correspondence, it is possible to split the rotation
angle a in two parts; one part related to the model point, a,,, and one
part related to the scene point, a,. In detail, taking into account that in
the intermediate world coordinate system the « angle is defined around the
xr-axis, the rotation on the two-dimensional yz-plane can be divided with
respect to the positive y-axis. In this case, the «,, and oy will be defined as
the rotation angles between the positive y-axis vector ¢, and the yz-plane
projection of the vectors obtained by the world transformed second points of
the model pair (VT m,) and scene pairs (WTs ss). As shown in Figure 2.4,
these angles can be defined as ay = atan2(a,,a,) and a,, = atan2(b,, b,),
where a =" Tgs,, b =" Ty m, and atan2(3,v) represents the multi-valued
inverse tangent. With this solution, the model angle can be precomputed
during the modeling stage and saved alongside the reference point in the
lookup table (m,.,a,,). Later, during the matching stage, for each scene
pair, the a angle is computed by adding the two angles. Considering that «
is defined from the model to the scene, the total angle can be computed as
Eq. (3.1),

O = Q5 — Q. (2.4)
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Figure 2.4: Representation of the LC « angle definition from two correspond-
ing pairs (s, s5) and (m,., ms).

Finally, in order to join similar candidate poses generated from different
scene reference points, the method is completed with a clustering approach
that groups similar poses that do not vary in rotation and translation more
than a threshold.

2.3 Related Methods

Since 2010, several new methods have been proposed based on Drost’s orig-
inal idea. First, in 2011, Kim and Medioni [60] proposed a variation of the
original method by including visible context information, differentiating vis-
ible points, points on the surface and invisible points. In addition, they used
two novel verification steps to check for surface alignment and surface sep-
arability. Drost and Ilic [36] introduced in 2012 a multimodal extension of
the method including edge information extracted from RGB data. Moreover,
their approach included non-maximum suppression of the clustered poses and
a pose refinement step based on Iterative Closest Point (ICP). In a different
direction, Choi et al. introduce in 2012 [30] a multimodal approach by ex-
tending the point pair features to 10 dimensions by including the HSV color
information of the point pairs. Following the same direction, the authors
proposed an extended solution in 2016 [31], where the color quantization
parameters were automatically estimated for different objects. Birdal and
Ilic [18], in 2015, analyzed some drawbacks of the method and proposed a
novel framework to overcome some of the issues regarding the high dimen-
sionality of the search space, sensitivity of the correspondence and the effect
of outliers and low density surfaces. Their novel solution included a coarse-
to-fine segmentation step, a weighted Hough voting and a fast ranking and
verification postprocessing steps. Hinterstoisser at al. [47] published in 2016 a
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major revision of the method presenting a novel approach with higher perfor-
mance and improved robustness against occlusion and clutter. Among their
contributions, they proposed to use normal information during preprocess-
ing and mitigated the discretization problems of the data by an exhaustive
neighbor checking. Their method used two different size voting zones and an
additional data structure to avoid multiple voting of similar pairs. In addi-
tion, they proposed an improved bottom-up clustering strategy and several
additional verification steps. Recently, Kiforenko et al. [59] presented a com-
plete performance evaluation of the Point Pair Features including a detailed
comparison with the most popular local features.
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Chapter 3

A Novel Approach Based on
Point Pair Features

In this chapter, a new method based on the Point Pair Features voting ap-
proach [37] for robust 6D pose estimation of free-form objects under clutter
and occlusions on range data is defined. In detail, the original ideas presented
in [37] are improved and a complete method within a local feature-based
pipeline is defined.

3.1 Method’s Overview

The proposed method pipeline, shown in Figure 3.1, can be divided in an
Offline modeling and an Online matching stages with six basic steps: Pre-
processing, Feature Extraction, Matching, Hypothesis Generation, Clustering
and Postprocessing. Due to the method’s particular correspondence grouping
step, using a voting table for each scene point, a basic straightforward imple-
mentation will require to create a voting table for each of the scene points dur-
ing the hypothesis generation step, with large memory requirements. From
a practical point of view, a more efficient solution is to iteratively generate a
hypothesis for each scene point using a single voting table. In this regard, the
green fine dotted box in Figure 3.1 represents the iterative implementation
of the steps Feature Extraction, Matching and Hypothesis generation for each
scene point. The method is considered to work with mesh data for modeling
and organized point cloud for matching, as standardized data types.
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Figure 3.1: Proposed method pipeline. The green fine dotted box represents
the iterative implementation of the steps Feature Extraction, Matching and
Hypothesis generation for each scene point.

3.2 Preprocessing

The Point Pair Feature voting method strongly relies on the discriminative
effect of the PPF and their sparse nature to allow an efficient, structural
aware local matching. The performance of the original four-dimensional PPF
and its variants has been deeply studied by Kiforenko et al. [59]. Their work
concludes that a set of PPF globally defining a model point has stronger
discriminative capability than most local features. On the other hand, they
also showed that, despite its robustness, the PPF are significantly affected by
noise. In fact, individually, each feature relies on the quality and relevance
of the normal and distance information extracted from the sparse surface
characteristics provided by the pairs of the sampled data. In this sense,
low quality or non-discriminative features will reduce speed and decrease
the recognition performance of the method. Therefore, the overall global
description performance, in terms of time and recognition, depends on the
number of features and the relevance and quality of each individual feature.
This relation makes the performance of the approach to rely significantly
on the preprocessing steps. In turn, the sampling and normal estimation in
preprocessing are mainly affected by the sensor noise and the relative size
of the underlying surface characteristics. Taking these considerations into
account, we propose a combination of two normal estimation approaches and
a novel downsampling methodology that mitigates sensor noise, accounts for
surface variability and maximizes the discriminative effect of the features.

3.2.1 Normal Estimation

For the normal estimation problem, we propose using two different variants
regarding the input data representation of each stage. For the Offline stage,
using reconstructed or CAD mesh data, the normals are estimated by aver-
aging the normal planes of each vertex s surrounding triangles. In this case,
noise and resolution limitations regarding surface reconstruction techniques

17



are considered out of the scope of this manuscript, and thus not considered.
For the online stage, using the organized point cloud data, we use the method
proposed in [44], based on the first order Taylor expansion, including a bi-
lateral filter inspired solution for cases where the surface depth difference is
above a given threshold. These two approaches provide a normal estimation
relative to the data source resolution and, additionally, the online method
provides an efficient and robust estimation against sensor noise [44]. Notice
that noisy and spiky surface data will affect the quality of the normal es-
timation step and, in turn, the downsampling step, decreasing the method
efficiency and performance. In this regard, a normal estimation robust to
noise is a basic part of the method, with a high impact on the matching
results [59].

3.2.2 Downsampling

Traditional downsampling methods, also called subsampling or decimation,
based on voxel-grid or Poisson-disk sampling, have a fixed size structure that
do not consider local information and tend to either average or ignore parts
of the data, removing and distorting important characteristics of the under-
lying surface. If these characteristics want to be somehow preserved, these
methods require increasing the sampling rate, i.e., decrease voxel size, which
in turn dramatically decreases the algorithm performance adding superflu-
ous data. As an alternative to these problems, we propose a novel approach
that accounts for the variability of the surface data without increasing non-
discriminative pairs.

The proposed method is based on a novel voxel-grid downsampling ap-
proach using surface information and an additional non-discriminative pairs’
averaging step. The method starts by computing a voxel-grid structure for
the point cloud data. For each voxel cell, a greedy clustering approach is
used to group those points with similar normal information, i.e., the an-
gle between normals is smaller than a threshold. Then, for each clustered
group, we average the oriented points, effectively merging the similar points
while keeping discriminative data. Figure 3.2 shows a simplified comparison
between the common voxel-grid average method and the proposed normal
clustering approach. Notice that, especially due to the PPF quantization
space, for close points, distance is not relevant and normals encode the most
discriminative information about underlying surface characteristics. As in
the original method, the voxel size is set to Ay, defining a value relative
to the model size. However, in our method, the parameter effect on the al-
gorithm performance is significantly reduced, moving towards a more robust
parameter-independent method.
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Figure 3.2: Representation of the normal clustering voxel-grid downsampling.
(a) original cloud with a voxel-grid structure; (b) common downsampling by
average; (c) novel proposed clustering approach; (d) result of the proposed
clustering approach.

Despite its local efficiency, this downsampling method does not account
for the cases where the non-relevant surface characteristics are bigger than the
voxel size. To mitigate these cases, when neighboring downsampled voxels
contain similar data, we propose an additional step to average those points
that do not provide additional surface information. This process is done by
defining a new voxel-grid structure, with a much bigger voxel size (e.g., two
or three times bigger), and averaging all points that do not have relevant
normal data compared with all their neighbors’ voxels points. This step will
reduce the points on planar surfaces, decreasing the number of total votes
supporting the hypothesis. However, as the process is applied equally to
the scene and the object, this will mainly decrease the votes of the non-
discriminative parts, effectively increasing the value of the rest of the surface
data.

3.3 Feature Extraction

As mentioned before, Kiforenko et al. [59] published an exhaustive study and
comparison of different types of PPF. Their results show that, despite the
multimodal variants, the original four-dimensional feature [37] provides the
best performance for range data. In light of this result, we propose to keep
using the original PPF introduced in Chapter 2, represented in Figure 2.1
and Equation (2.1).

During the Offline stage, the model bounding box is obtained and the
model diameter d,, € R is estimated as the diagonal length of the box. For
a given PPF, a four-dimensional index is obtained using the quantization
function defined in Equation (3.1):

€ T2 Zs3 Xy
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where the quantization step Agg is set to 0.05 dy, and Agpge is fixed to
1¢- These values have been set as a trade-off between recognition rates and
speed. In this way, the lookup table is defined with a size of [ =] x [ Aa:gze] X
[ Aa:gzj x| Aa:gle—" After preprocessing, for each model pair, the quantized
PPF index is obtained and the reference point and the computed «,, angle
are saved into the pointed table cell. In this case, all points of the model are
used.

During the online stage, for each reference point, all possible point pairs
will be computed and, using the four-dimensional lookup table, matched with
the object model. Following the solution proposed by [37], only one of every
five points (in input order) will be used as a reference point, while all points
will be used as second points. To improve the efficiency of the matching part,
in order to avoid considering pairs further away than the model diameter d,,,
for each scene reference point, we propose to use an efficient Kd-tree structure
to obtain only the second points within the model diameter.

3.4 Matching

As explained in Chapter 2, the Point Pair Feature voting approach solves
the matching problem by quantizing the feature space, grouping all similar
pairs under the same four-dimensional index. As a result, any point pair is
matched with all the other pairs that generate the same quantized features in
a constant time. Despite its efficiency, this approach has two main drawbacks.

The first drawback is regarding the noise effect on the quantized nature
of the point pairs matching, as the quantization function () can output differ-
ent indices for very similar real values. In these cases, similar pairs generate
different quantized index, which points to different cells of the lookup table,
missing correct correspondences during the online stage. Figure 3.3a shows
a one-dimensional representation of the problem. A straightforward solution
was proposed by [47]. Their approach spreads the PPF quantized index to all
its neighbors, effectively retrieving from the lookup table all the correspond-
ing pairs pointed by the index alongside the pairs stored in its 80 neighboring
cells, i.e., 3* — 1 cells for a four-dimensional table. The main drawback with
this method is the increased number of access to the lookup table, which is
done for each matching PPF, decreasing significantly the time performance
of the method. In addition, another problem can arise regarding the corre-
sponding distance between features. If the quantization size A is kept, see
Figure 3.3b, the correspondence distance increases, dramatically augmenting
the number of corresponding pairs and introducing matching pairs with lower
similarity level to the voting scheme. An alternative approach is to decrease
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the quantization size 2

3 see Figure 3.3c, accounting for the neighboring cells,
using a bigger data structure.

We propose a more efficient solution by only checking a maximum of 16
neighbors keeping the size of the quantization step, as shown in Figure 3.3d.
Considering that the difference between similar pairs are mainly generated
by sensor noise, it is reasonable to assume that this noise follows a normal
distribution characterized by a relatively small standard deviation o, i.e.,
smaller than half of the quantization step o < %. Based on this assump-
tion, we propose to check the quantization error e, = (X — [X]) € [0,1) to
determine which neighbors are more likely to be affected by the noise. This
process is defined for each dimension by the piecewise function represented

in Equation (3.2):

-1, e, <%,
N(e,) =<1, eq > (1-%), (3.2)
0, otherwise,

where the result is interpreted as follows: —1 indicates that left neighbor
could be affected, 1 indicates that right neighbor could be affected and 0
indicates that no neighbor is likely to be affected.
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Figure 3.3: One-dimensional example of the noise effect on the lookup table
during matching with four different strategies. (a) original approach; (b)
approach of [47] using A; (c) approach of [47] using £ (d) our approach.

During matching, for each dimension, those pairs from neighbors that are
likely to be affected by noise are retrieved. In practice, for generalization, we

set the standard deviation value to three times the quantization step o =

A,
3



however, other values could be used regarding any specific noise model. This
method have a best case scenario of accessing to a single table cell and worst
case of accessing 16 cells, i.e., 2*. As we keep the same quantization step as
the original method, a relatively lower similarity level correspondence may
be retrieved during matching, yet with smaller number and negligible impact
on performance.

The second drawback is related with multiple voting and over-
representation of similar scene features. This problem is generated when
during a scene reference point matching, several different pairs obtain the
same combination of model correspondence and quantized « rotation angle.
In detail, this happens when similar scene pairs obtain the same model cor-
respondence and they have a similar scene angle value ay, generating the
same quantized « index. Moreover, this situation is worsened by the neigh-
boring checking method. This problem, especially found on planar surfaces,
generates multiple superfluous votes for the same LC on the voting table
that may produce a deviation in the results. Following the solution of [47],
we avoid matching two model pairs with the same combination of quantized
PPF index and scene angle a,. This process is efficiently done by creating an
additional 32 bits variable for every PPF quantization index, where each bit
represents a quantized value of the scene angle. In this way, when matching
a point pair using a PPF| the bit value related to the scene angle is checked.
Only if the bit is 0 is the matching allowed and the bit is set to 1, avoiding
any new matching with the same exact combination. Notice that the first
drawback could be more efficiently solved during training by duplicating the
pairs on the neighboring cell. However, in this case, the second drawback
will be more difficult to avoid, as keeping track of the same pairs on different
cells will request a more complex checking strategy.

3.5 Hypothesis Generation

As explained before, for each scene reference point, all the possible pairs are
matched with the model. Then, during hypothesis generation, all consistent
correspondence are grouped together generating a candidate pose. In detail,
for each obtained scene—model pair correspondence, an LC combination is
voted in the two-dimensional voting table. In this way, each position of the
table represents an LC, which defines a model pose candidate in the scene,
and its value represents the number of supports, which indicates how likely
the pose is. The LC o angle is quantized by Ag,4e defining a voting table
with a total size of | M| x [+2=—]. After all votes have been cast, the highest

Aa,ngle

value of the table indicates the most likely L.C, defining a candidate pose for
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this scene reference point. At this step, an important problem arises from
the assumption that a local coordinate always exists and, therefore, each
piece of scene data has a corresponding model point. In reality, most scenes
will have a majority of points that do not belong to the object. In order to
avoid generating false positive poses, which can induce bias to the following
clustering step, we propose defining a threshold to only consider LC with a
minimum number of supports, e.g., three or five votes. Therefore, if the peak
of the table is below this number, the pose will be discarded; otherwise, a
candidate pose with an associated score is generated.

3.6 Clustering

The matching result of different scene reference points yields multiple candi-
date poses which may be defining the same model hypothesis pose. In order to
joint similar poses together, we propose using a hierarchical complete-linkage
clustering method. This clustering approach enforces that all combinations
of elements of each cluster follow the same conditions based on two main
thresholds, distance and rotation. In practice, we sort the candidate poses
by their vote support and create a cluster for each individual pose. Then, all
clusters are checked in order and two clusters are joined together when for
all combinations of their elements the conditions hold. In this way, the most
likely clusters will be merged first, reducing the effect of mutual exclusive
combinations. In detail, for two defined thresholds # and w, two clusters
C;.C; C SE(3) will be joined if they satisfy the condition:

maz{dist(Py, P) | P, € C;, P, € C;} <0 A

3.3
max{rot(Py, P) | P, € C;, P € C;} < w, (3:3)

where the binary function dist : SE(3)xSE(3) — R represents the Euclidean
distance and the binary function rot : SE(3) x SE(3) — [0, 7] represents the
rotation difference between two poses defined by the double arccosine of the
inner product of unit quaternions [53]. Finally, for each cluster, all elements
are merged and individual scores are summed up to define a new candidate
pose.

3.7 Postprocessing

At this point, the method provides a list of candidate poses sorted by the
clustered summed score. In order to obtained the best hypothesis pose, these
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candidate poses are rescored, refined and filtered through a series of highly
efficient postprocessing processes.

3.7.1 Rescoring and Refining

The score of each pose is just an approximation obtained from the sum of
each clustered pose number of matching pairs. Due to the nature of the
hypothesis generation and clustering steps, joining poses obtained from each
table peak, the clustered pose score may not properly represent how well the
pose fits the object model to the scene. In this regard, we propose computing
a more reliable value through an additional re-scoring processes. This new
score will be computed by adding the total number of model points that fit
the scene, where a fitting point is a model point closer to a scene point than
a threshold. In particular, for a given pose P € SFE(3), the fittings score is
computed as shown in Equation (3.4):

Stining(P) = Y _ [min{||Pm — s|| | s € S} < th], (3.4)
meM
where [| represents the Iverson bracket and th represents the maximum dis-
tance threshold. Taking into account the preprocessing of the data, this
threshold is set to half of the voxel size. Notice that this re-scoring proce-
dure can be efficiently solved by a Kd-tree structure.

Even though this process provides a better fitting value approximation,
there are two important issues that can still reduce the accuracy of the score.
First, the deviation produced by model points that are self-occluded in the
scene by the camera view, and, second, the possible aligning error of the
object model respect to the scene. In order to mitigate these problems, we
propose to use an efficient variant of the ICP algorithm alongside a per-
spective rendering of the object model for each hypothesis pose. For every
clustered pose, the model object will be rendered using a virtual camera
representing the scene acquisition system. At this point, the rendered data
will be downsampled in the same way than the scene data. After that, an
efficient point-to-plane ICP algorithm, based on Linear Least-Squares Opti-
mization [67], using projective correspondence [91] will be applied. In this
way, the poses are refined and a better fitting score is computed. Despite
the efficiency of this process, the large number of hypotheses obtained from
the previous steps could significantly affect the whole method performance.
A compromise solution is to apply this re-scoring and ICP steps only to the
subset of the clustered poses with the higher scores, which represent the more
likely fitting poses.
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3.7.2 Hypothesis Verification

Based on the ideas proposed by [18, 47, 60|, after the re-scoring process, two
verification steps are applied to filter false positive cases. In detail, these
steps are used to discard well fitting model poses that do not consistently
represent the underlying scene data.

Visibility Context Verification

The first verification step checks the model-scene data consistency and dis-
cards cases which do not properly match the visibility context of the scene
data. From the virtual camera point of view, each point of the rendered
view of the model can be classified in three types, regarding its position with
respect to the scene data: inlier, occluded and non-consistent. Inlier, shown
in Figure 3.4a, is a model point that is near a scene point within a threshold
distance and it is considered to match and explain the underlying scene sur-
face. Occluded, shown in Figure 3.4b, is a point that is further away from
the scene than a surface inlier; therefore, it is below the scene surface and
can not be considered right or wrong. Non-consistent, shown in Figure 3.4c,
is a point that is closer to the camera than a surface inlier, which means that
it is not explained by the scene data and it is considered wrong. Hypotheses
with a big percentage of occluded points or relatively small percentage of
non-consistent points are likely to be false positive cases, hence discarded.
In order to deal with challenging cases and certain degree of sensor noise, a
maximum percentage of 15% of non-consistence points and 90% of occlusion
is used.

Figure 3.4: Model surface points classification regarding its distance to the
scene data from the camera view. Green, blue and red colors label inlier,
occluded and non-consistent points, respectively on the cat model surface.
(a) matching pose; (b) occluded pose; (c) non-consistent pose.
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Edge Verification

The second verification step accounts for well fitting poses with non-matching
surface boundaries. This checking procedure is especially useful to discard
cases relying on planar or homogeneous surfaces without relevant surface
characteristics, which can easily be incorrectly fitted to other similar scene
surfaces if no boundary considerations are applied. For each hypothesis pose,
this step extracts the silhouette of the object model from the camera view,
as shown in Figure 3.5a, and compares it with scene extracted edges, Fig-
ure 3.5b. The scene edges are extracted by identifying depth and normal
variations. The comparison is performed by averaging the distance from
each silhouette point to the scene edges. Therefore, having a set of pixels
defining the scene edges E, C Z?, for each different model pose view sil-
houette, defined by a set of pixels E,, C Z2, the average edge score can be
computed as:

1 .
Sedge(Em, Eq) = > min{llem —eill e € B} (35)

‘Em‘ em€EEm

Poses where the final score is higher than a threshold are discarded. In
practice, a threshold of 5 pixels is used as an average distance error.

(a)

Figure 3.5: Examples of the extraction of the object model silhouette and
the scene edges. (a) object model silhouette; (b) scene edges.

Notice that both steps may wrongly discard true positive cases under high
occlusion. In this sense, both verification steps represent a trade-off between
false positive pruning and occlusion acceptance rate. Hence, a request for
high scene consistency, in terms of visibility context and contour matching,
will reduce the capability of the system to handle occluded cases in benefit
of higher reliability for normal cases.
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Chapter 4

Facing Occlusion with Visual
Attention and Color Cues

4.1 The Occlusion Problem

Although clutter and occlusion are two of the main challenges faced by ob-
ject recognition, the robustness of most methods against these cases is un-
clear. In this direction, most solutions have been tested on datasets with
scenes combining different levels of clutter and occlusion, providing only a
general picture of the robustness. Even though recent methods show robust-
ness against clutter on highly complex scenes [21, 47], occlusion cases are less
clear and seem to be far more challenging. In this line, older results presented
by [37, 75, 83| are some of the few published works facing occlusion in detail.
In order to obtain a more updated and clear picture of the status of the pose
estimation problem, Hodan et al. [49] presented an extensive benckmark for
6D pose estimation where different challenging existing and new datasets
where collected, refined and evaluated under a common and fixed procedure.
The benchmark were tested for 15 differerent state-of-the-art methods. In
this regard, a preliminary work of the method proposed in Chapter 3 was
also included in the evaluation. However, despite that most recent methods
are robust to illumination changes and clutter, the results shows that 6D
pose estimation on occlusion scenarios still remains a challenging case for
all methods. In particular, results obtained on the Linemod Occlusion (LM-
O) dataset show signs of the weakness of state-of-the-art methods against
occluded cases, decreasing the overall recognition results from 88% to 59%
when compared to the non-occluded version Linemod (LM) dataset. In more
detail, visibility results presented in [49] show that recent method perfor-
mance obtains less than 10% recognition rates when occlusion levels reach
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50% of the object.

In this chapter, we propose to incorporate color information and visual
attention principles to boost the performance of a pose estimation method
for highly occluded scenarios, such as the ones faces on the LM-O dataset. In
detail, we propose to improve the method presented in Chapter 3 by using
color information to guide the attention of the method to potential scene
zones and improve the surface matching of the method.

4.2 Visual Attention

Visual attention is an important biological mechanism that bases on select-
ing subsets of the world information to perform a faster and more efficient
scene understanding. Inspired by the understanding of the human visual
system (HVS) and the development of more efficient intelligent applications,
visual attention has been an important research topic in both neuroscience
and computer vision fields. Based on the bottom-up and top-down architec-
tures [102], different computer vision methods for visual attention have been
presented behind the ideas of salient maps [54], object-based attention [100]
and saliency feature vectors [87]. Recently, Potapova et al. [86] presented a
survey of visual attention from a 3D point of view, analyzing 3D visual atten-
tion for both human and robot vision. Their work reviews most important
presented attention computational models, from the widely used contrast-
based saliency models [54] to recently proposed Convolutional Neural Net-
works (CNN) learning approaches [65]. On this line, most research done
on visual attention has focused on biological inspired bottom-up attentional
mechanisms, where the generalized idea of salient features identification is
applied to optimize the application of the limited computational resources to
the most attractive elements, regardless of final task or prior knowledge. This
pathway, however, does not completely match the requirements of occluded
scenarios, where target objects may not necessary be prominent or highly
distinguishable attention elements in the scene. Hence top-down mecha-
nisms, where previously known features are identified as salient scene points
for potential targets, are considered more suitable. Therefore, following this
direction, we propose to integrate an attention mechanism to the method
presented in Chapter 3 by using color cues as prior knowledge of the object.
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4.3 Color Cues to Improve Matching

Although studies suggest that color contributes to biological object recogni-
tion [23], traditionally, color information has been scarcely applied to com-
puter vision recognition approaches. While most of methods relies on shape
and texture information as intensity edges [69] and gradients [68, 99], only
few cases have considered color information as a prominent feature. Al-
though this situation has been abruptly reversed with the rising of artificial
neural networks approaches, for which color information is usually consid-
ered, only few deterministic solutions have explicitly used color information
for object detection and recognition, such as color SIFT features [107] for 2D
vision or CSHOT [103] and VCSH [110] for 3D vision. For the PPF voting
approaches, Drost et al. [36] proposed a multimodal variant of the original
method [37], defining pairs of oriented 3D points and 2D gradient edges. The
proposed method showed a noticeable improvement on performance while
showing robustness to light, having the main drawback of a big impact on
the runtime performance [49]. In a different direction, Choi et al. [30, 31]
proposed to extend the PPF to 10 dimensions, including color information
from both points underneath surface. Although showing positive results on
some datasets, recent results presented in [59] suggests that the inclusion of
the color on the PPF may provide for some cases higher precision results
but lower recognition rates. The deterioration of the recognition rates can
be attributed to the subjugation of the geometric information to the color
information, disregarding valid geometrical matches for non-matching color
cases. This characteristic can effect recognition performance for cases where
color information is distorted by illumination, modeling artifacts or scene and
sensor characteristics, resulting in non-reliable color information. Therefore,
following a different approach, we propose to include the color information
as a weighting factor for feature matching, increasing the value of a voting
pair if the underlying matching points color information is consistent with
the geometrical data. In addition, we propose a new rescoring step for the
method in order to take in consideration the weighting factors on the fitting
score.

4.4 A Novel Solution for Occlusion

In this section, an attention-based approach and color cue weighting solu-
tion are integrated into the method presented in Chapter 3. In detail, color
information is used to identify a set of salient points that will guide the at-
tention of the pose estimation algorithm, decreasing the complexity of the
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Figure 4.1: The Point Pair Features voting approach globally defines and
locally matches the object model as a set of oriented point pairs from each
reference point.

global matching problem while increasing the chances of obtaining a positive
result. In addition, the color information is used as a weighting factor for
the matching of point pairs and re-scoring step to increase the relevance of
the color consistence geometrical data.

4.4.1 Attention-Based Matching Using Color Cues

The PPF voting approach is characterized for describing the whole object
model as a set of oriented point pairs from each of its points, as show in
Fig. 4.1. As explained in Chapter 2, the matching process relies on finding
for each scene reference point the best LC, i.e. corresponding model point
and rotation angle, that better explains a point pair model definition locally
in the scene, i.e. most voted LC in the accumulator. In this sense, only scene
reference points that belong to the object model surface will have a valid
corresponding model point, and thus a LC. Therefore, other scene points only
add superfluous cases which increase processing time and the likelihood of
mismatching. From this point of view, the right selection of these references
points is an important part of the method performance, which has been
underestimated so far. In fact, up to now, most available approaches propose
to use a blind-search approach, using all scene points [31, 47] or a fixed
fraction of them, usually 1/5th [37, 108].

If we consider a more intuitive human approach, an object can be more
efficiently found by focusing attention on zones of the scene that contains
elements or features which resemble the ones of the object and can potentially
be part of it. Following this reasoning, based on the nature of the method
to define and match an object as a set of point pairs from single reference
points, we propose to center the attention of those reference points on scene
points with similar colors than the object model. In addition, the method
needs to consider cases for which those potential zones may not be properly
identified and the whole scene should be searched. Hence, we propose two
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different strategies: (1) to focus the matching attention on parts of the scene
with color information similar to the object; and (2) to search the whole
scene at constant space intervals. These two solutions follow a more similar
human-like approach for which an object is searched in a scene: initially
looking for a similar color and then, in case the color is not a valid feature,
searching the full scene at regular space intervals.

In order to identify points of the scene that have similar color than the
object and can potentially belong to object surface, we propose to check
the color similarity between each of the scene points and the object model.
As a single object can have multiple colors on its surface and in different
quantities, we only consider those scene points for which their color is found
multiple times in the model surface. In this direction, we propose to search,
for each scene point, all similar color model points by using a color metric
and count the total number of similar points. Then, only those points with a
minimum number of matching model color points, which are more likely part
of the object, will be considered. In detail, for a given scene point s € S, the
set of similar color model points is defined by Eq. 4.1,

C(s) = {ml|d.(s,m) < a,m € M} (4.1)

where d.() is a color distance metric between two points and « is a threshold
bounding the similarity level. For a given model object M, the set of a
scene reference points used to center the method attention is defined by the
cardinality of color matching points as defined by Eq. 4.2,

R(S) = {s| |C(s)| = B,s € S} (4.2)

where [ is a threshold bounding the minimum number of color matches for
a scene point to be considered. This parameters is in practice fixed to 10
to avoid considering cases with few color matches. Overall, the attention
process is defined by a color similarity function, d.(), and two bounding
thresholds, a and 5. Fig. 4.2 shows a representation of the scene points with
high cardinality for the object Ape.

In another direction, a voxel-grid structure is defined to divide the scene
at fixed regular distance intervals on the 3 dimensions. These divisions are
used to determine an homogeneous distributed set of potential points on the
3D space. Figure 4.2d shows a simplified 2D representation of the concept.
In practice we propose to use a voxel size of 10% of the object diameter, in
order to ensure that several points lie on the object.
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(a)

Figure 4.2: Representation of the attention-based reference points selection
method. (a) Ape object model; (b) Scene containing the Ape object; (c)
Salient points potentially being part of the Ape object. (d) 2D representation
of the points distributed at a fixed distance in the scene.

4.4.2 Color Weighted Matching

In addition to rise the attention on potential scene zones, the object model
color information can be use to improve the matching process. Choi and
Christensen [30, 31] proposed a straight forward approach to use the color
information underneath each point pair using the HSV color space to define
10 dimensional features, which include both the geometrical and color data.
This solution, however, subordinates the 3D geometrical information to the
quality of the color information, and vice versa. This subordination implies
the requirement of high quality color models and scene data. Otherwise, the
solution can dramatically decrease the method performance on low quality
color scenarios produced by the discrepancy and distortion introduced by
different sensor properties, illuminations and model creation process. We
propose a different solution in which color information is used as a weight
factor for geometric data, rewarding those model features that are consistent
with the scene in terms of both geometrical and color information. In this
direction, a weight value is applied for each L.C on the accumulator to increase
the value of those poses supported by color consistent point pairs. The
weight value for a given scene-model corresponding point pairs, s,,ss € S
and m,,mg € S, is defined by Eq. 4.3,

pr(sra Ssy My, ms) =1+ Wc(sra mr) : Wc(ss> ms) (43)
and Eq. 4.4,

w, d.(s,m) < «, (4.4)

0, otherwise,

where w is a scalar factor which relates the value of the color information
with respect to geometrical data. Notice that the multiplication factor links
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the consistency of each point of the pair and the added unit accounts for the
basic value of the geometrical matching.

As explained in Chapter 3, the method rescores the clustered candidate
poses to compute a better fitting value. Therefore, the proposed weighting
for each LC will only effect the two-dimensional corresponding grouping step
and color information will not be taken into account after rescoring. In order
to address this problem and compute a more robust score, we propose a novel
improved rescoring approach which takes into consideration both geometrical
and color data. Similar to Eq. 3.4, the fitting score is obtained by summing
the model points that have a scene nearest neighbour within a threshold.
However, for this case the score value for an object point is compute by
adding the inlier maximum distance plus the additive inverse of the point’s
distance, i.e. euclidean distance between the object point and its nearest
scene point. In this way, inliers that are far away from the surface provides
lower score. Then, this geometric score is multiplied by one plus the color
matching weight, in a similar way than the weighted matching of Eq. 4.3.
For a given pose P which transforms the model M to the scene S, the score
is computed as defined by the Eq. 4.5,

Seolor(P) =
5 {(m — 1P = Spnl]) - (14 We(Sum,m)),  ||Pm = Sunl| < th, (4.5)
ot L0 otherwise,

where,

Spn, = argmin{||Pm — s||} (4.6)
seS

represents the nearest neighbour from a transformed model point to the scene
surface and th represents the maximum geometric distance threshold.

The proposed color weight is computed for each voted LC during match-
ing and each model point during rescoring. This requires to compute the
color distance metric for the same scene-model combination multiple times,
significantly increasing the method’s running time. In order to mitigate this
problem we propose to precompute the weight for each scene-model point
combination in a lookup table. In addition, we propose to find out the at-
tention points and compute the color weight simultaneously. In detail, we
propose to create a kd-tree structure with the model color information, there-
fore we can efficiently obtain all similar colors for each scene point. Then, the
similar colors of the model point will be used to compute the weight factors
We and stored in a table position indexed by the scene and model index.
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In this way, the given weight for any scene-model point combination can be
found by accessing the lookup table in constant time.

4.4.3 Color Models and Distance Metrics

Color information can be affected by scene conditions (i.e. illumination and
shadows), sensor properties (e.g. exposition time, white balance, resolution,
etc), and object modeling processes. In this direction, we have taken into
account several combinations of most used different color models and metrics
to determine the most robust solution.

First, we consider the RGB color space [84], as the most standardized
solution. We propose to use the Ly norm as defined by Eq. 4.7,

L2(37 m) = \/(Rs - Rm)2 + (Gs - Gm)2 + (Bs - Bm)Qv (4'7)

We also consider the HSV/HSL [84] spaces, due to their known illumina-
tion invariant properties. Similarly to RGB, we propose to use a variant of
the Lo metric, which takes into consideration the particularities of the Hue
dimension of both spaces, this metric Ly Hue is defined by Eq. 4.8

LoHue(s,m) = VAH? + AS? + AL?

AH = min(abs(Hs — Hp,),1 — abs(Hs — H,y,))
AS =5, — S,

AL=1L,— L,

Finally, we have also considered the CIELAB color space [40, 61, 74, 84],
as a perceptually uniform space with respect to human vision. This color
space provides a device-independent color model with respect to a defined
white point. Although conceived and mostly used in the industry, this com-
plex color space has been also tested before for other 3D computer vision

methods [103]. In this case, the CIE94 delta E distance metric is used as a
trade-off between accuracy and speed. In this case, we define the normalized

(4.8)
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CIE94 metric as shown in Eq. 4.9,

1 AL* \? ACH \? AHY \*117?
CIE94 = ——ab ——ab
(s,m) 128KKLSL> +(KCSC) +(KHSH)} ’
AL* =L —L*
Cr =/a + b
Cy=far’ +b7

Al = C,, — €5 (4.9)

A}, = \JAa” + AV — ACs
Aad* = a;, —a;

AV = bF, — b

S, =1

Se =1+ 0.045C,

Sy =1+ 0.015C%,

where the model point is considered as the standard reference and the pa-
rameters are set like graphic arts applications under reference conditions with
K; = Kc = Ky = 1. Notice that the LAB color space transformation has
been done by using the X, Y and Z tristimulus reference values for a perfect
reflecting diffuser, using the standard A illuminant (incandescent lamb) and
2°observer (CIE 1931), reader can refer to [74, 84] for more details about this
color space and its metrics.
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Chapter 5

Evaluation and Results:
Analysis on a Comprehensive
Pose Estimation Benchmark

5.1 The BOP Pose Estimation Benchmark

We had the opportunity to collaborate on the evaluation of a comprehensive
novel benchmark for 6D object pose estimation. The benckmark, presented
in Hodan et al. [49], introduces an standard evaluation procedure, an online
platform and the combination of an extensive, variate and challenging sets
of new and existing publicity available RGB-D datasets, tested with state-
of-the-art methods. The benchmark, shown in Table 5.1, combines eight
datasets including 89 object models and 62,155 test images with a total of
110,793 test targets. Each dataset is provided with textured-mapped 3D ob-
ject models and training images from real or synthetic scenes. Notice that,
for our method, only the 3D object model has been used with the texture
information. The test images have distinct levels of complexity with occlu-
sion and clutter including different types of objects, from common household
objects to industrial-like pieces. For evaluation, the benchmark proposes to
use a variation of the Visible Surface Discrepancy (VSD) evaluation met-
ric [48], which is robust against ambiguous cases, explained in [49]. In this
regard, all the presented results have been obtained using a misalignment
tolerance 7 = 20 mm and correctness threshold 8 = 0.3. Due to the novelty
of the benchmark, authors have published a subset of the original dataset
to facilitate the comparison with the state-of-the-art and foster participation
to the benchmark, in particular for slow methods. Based on the value of a
robust evaluation metric and an extensive set of state-of-the-art results, we
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have tested our method on the aforementioned subset.

Dataset Objects Training Images Test Images Test Targets

Real Synt. Used All Used All

LM 15 - 1313 3000 18,273 3000 18,273
LM-O 8 - 1313 200 1214 1445 8916
IC-MI 6 - 1313 300 2067 300 2067
IC-BIN 2 - 2377 150 177 200 238
T-LESS 30 1296 2562 2000 10,080 9819 49,805
RU-APC 14 - 2562 1380 5964 1380 2911
TUD-L 3 >11,000 1827 600 23,914 600 23,914
TYO-L 21 - 2562 - 1680 - 1669
Total 89 7450 62,155 16,951 110,793

Table 5.1: BOP benchmark dataset [49]. Each dataset has several objects,
training images and test images. Some test images have more than one object,
defining several test targets. Used values represents the current subsets used
for the methods evaluation.

5.2 Method’s Step and Parameter Analysis

In this section, the effect of different method’s steps and parameters are
analyzed and compared. The main purpose of this part is to provide a
picture of the method’s steps relevancy, the parameter dependency and the
best color metric for the proposed solution.

5.2.1 Normal Clustering, Matching and Rendered
View

Initially, the contribution and value of the normal clustering, rendered view
and proposed improved matching are analyzed. These tests has been con-
ducted on the subset of datasets defined by the BOP benchmark [49]. If
not explicitly indicated, all cases has been tested with the same parameters.
The computational time difference between approaches is provided as a mul-
tiplication factor (e.g., two, three or four times slower) with respect to the
faster approach in order to draw a more hardware-independent picture of the
relation between recognition improvement and time cost.

First, the contribution of the proposed normal clustering downsampling
step (NC), alongside the second averaging step, and the appropriateness of
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using a model rendered view (RV) for the re-scoring process are evaluated. In
order to draw a clear picture of their contribution to the final method result,
the two approaches have been disabled and their simpler approaches used.
In detail, a common average voxel-grid and a whole model re-scoring process
have been used as the basic alternatives. As can be observed in Figure 5.1a,
using a rendered view (RV) for re-scoring, reduces the running time and
provides a slightly higher recall, probably as a result of estimating a better
fitting score using less data. In addition, when this part is combined with
the proposed normal clustering (NC) approach for downsampling, the com-
putational time further decreases and a very significant improvement in the
results can be observed. Indeed, this result supports our previous reasoning
that the preprocessing step is a key part of the method performance.

62% + 75%
Using NC + RV Using RV Basic Single All A All 073 ours

80%

79%

76%

AVG Recall Time AVG Recall Time
(a) (b)

Figure 5.1: Performance comparison between different approaches. (a) com-
parison of the basic method against RV and NC improvements; (b) compar-
ison between matching with single cell, all neighbors with A and % and our
method using 16 cells maximum. Note: the left axis shows recall value in
percentage and the right axis shows time factor.

Second, the four discussed strategies for decreasing the effect of sensor
noise on the quantization feature space are compared. Figure 5.1b shows the
recall score for each approach and the time factor with respect to the single
cell checking case. The results are surprising in several ways. On the one
hand, it can be seen that the contribution of this part, analyzing the overall
recall for the tested datasets, is relatively small with less than 1% improve-
ment for all cases. On the other hand, in our implementation, the proposed
solution performance goes beyond the designed efficiency and provides, on av-
erage, better results than the other approaches with dramatically lower time.
Although this effect is irregular for different types of objects and scenes, a
plausible explanation for these results can be attributed to the increased cor-
respondence distance between PPF. Indeed, the proposed approach provides
a larger distance only for limited cases, effectively only slightly increasing
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the overall distance, while avoiding the introduction of many matched pairs
with a low similarity level to the voting scheme.

5.2.2 Rescoring and ICP

In this part, the effect of the method postprocessing parameters on the re-
sult has been studied by analyzing different cases. These tests have followed
the same procedure than previous subsection. First, the effect of consider-
ing different number of hypotheses has been studied. Figure 5.2a shows the
obtained average recall results for all datasets taking into consideration dif-
ferent number of hypotheses without using any ICP or verification step. As
can be seen, the re-scoring process only accounts for a relatively small im-
provement with respect to the one hypothesis case, which represents the best
hypothesis obtained after the clustering step. In addition, it can be observed
that the re-scoring process alone does not provide any significant improve-
ment using 50, 200, 500 or 1000 hypotheses. Second, a test for analyzing
the ICP effect into the re-scoring process using 1000 hypotheses has been
conducted. Notice that the verification steps have not been used. As shown
in Figure 5.2b, after poses are refined using ICP, the re-scoring process be-
comes more effective and performance increases with respect to the number
of poses refined. This improvement is slowly decreasing for a higher number
of poses, suggesting that, in fact, hypotheses are sorted by their likelihood,
as expected. These results also corroborates the value of the ICP step to
estimate a more accurate fitting score value.

1 50 200 500 1000 [ 50 200 1000
Hypotheses ICP refined poses using 1000 hypotheses

AVG Recall Time AVG Recall Time

(a) (b)

Figure 5.2: Performance comparison using different post-processing param-
eters. (a) comparison using a different number of hypotheses, no ICP or
verification step is applied; (b) comparison refining different number of poses
for 1000 hypotheses, any verification step is applied. Note: left axis shows
recall value in percentage and right axis shows time factor.
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5.2.3 Alpha Value for Different Color Spaces

0.8

HSV L2Hue
—+—HSL L2Hue
LAB CIE94

0.75 7| ——Depth Only

Figure 5.3: Evaluation of different color spaces and metrics combinations
with respect to the alpha value.

At this point, the novel color solution presented in Chapter 4 is evaluated
for the different discussed color spaces and metrics with respect to the alpha
value. For this part, the method has been evaluated for the Linemod Occlu-
sion (LM-O) dataset [22, 46] as a part of the BOP benchmark [49], due to
its high occlusion level. Results are compared against the recall values ob-
tained by the basic method of Chapter 3 using depth only. For this test, the
omega parameter has been fixed to 5. Results for all four tested color spaces
are shown in Fig. 5.3. As can be seen, all tested cases improve the results
obtained by using the depth only, obtaining best recognition rates for alphas
0.5, 0.45, 0.45 and 0.1, for the RGB Lo, HSV LyHue, HSL LyHue and LAB
CIE94 cases, respectively. HSV shows a very similar result to HSL, although
HSV obtains a slightly better behavior and the highest recognition rate, with
an overall recall of 71.21%, providing a very significant improvement with
respect to the 61.87% obtained by using depth only. It is interesting to notice
the difference between the LAB CIE94 results and the RGB, HSV and HSL
colors spaces with the L, and LoHue metrics, for which the alpha values
shows a more stable behaviour around 0.45.

The result in terms of recall and absolute recall improvement with respect
to visibility rate are analyzed in Figure 5.4. In detail, the recognition rate
for the best alpha, i.e. highest recall, has been plot with respect the visibility
percentage of the recognized object. Notice that higher occluded cases have in
general less test targets. Recognition rates obtained using the basic method
presented in Chapter 3, using depth only, has been included as a reference to
compare the improvement obtained for different visibility rates. As can be
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seen, there is an improvement of the recognition rates on all cases for visibility
levels higher than 20%. In particular, the results show the value of the
proposed improvements on occluded cases, with the highest improvements on
occlusion level lower than 60%, with improvements of around 20%, 30% and
20% for object with a 30%-40%, 40%-50%, 50%-60% visibility, respectively.
The best overall results for all the visibility spectrum are obtained again on
the HSV space, although recognition rates of 1.8% for LAB and 3.6% for
RGB are obtained for a visibility rate of 20%-30%.
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Figure 5.4: Results obtained using different color and metric cases for the
best alpha with respect to the object visibility level. (a) Overall recognition
rate; (b) Absolute improvement rate with respect to [108].

The recall obtained for each object for different levels of visibility are
shown in Figure 5.5. As can be observed, most improvements has been
localized on relatively low levels of visibility, expanding most object minimum
visibility level. Objects Ape, Can, Driller and Eggbox shows an improvement
mainly on visibility levels lower than 80%. Overall, Can and Drill are the
most robust objects with recognition rates near 100% for 50% occlusion.
The improved robustness against occlusion provided by the proposed method
can be specially seen on the objects Can and Duck, showing recognition
rates of 71% and 50% for 30%-40% visibility, respectively, which represents
a tremendous improvement with respect to the original 21% and 0%.

5.2.4 Omega Weight Factor

Following the previous experiments, we have analyzed the effect of the omega
parameter on the results for the different color spaces and metric cases. This
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Figure 5.6: Evaluation of omega parameter for the best alpha value.

parameter relates the value of the color information with respect to the ge-
ometrical data. For this experiment, the best alpha value obtained for each
case has been used. Obtained results are shown in Fig. 5.6. As can be seen,
for HSV, HSL and LAB cases, the recall increases for bigger values of omega
and quickly saturates for values higher than 5. Therefore, all these cases
show a similar behavior and provide the best results for all tested values
bigger than 5. On the other hand, the RGB case shows a somehow different
behaviour, obtaining the maximum value for 1, while decreasing again, pro-
viding also a stable result after 5. This case shows a less stable behaviour
providing the best result for 1, decreasing up to 4% for bigger values. In this
case, the RGB color space provides low and less stable results.

5.3 Performance Evaluation Using Depth

The proposed method has been evaluated against 14 state-of-the-art meth-
ods on the BOP Benchmark. These methods cover all main research
branches with local feature-based, template matching and machine learn-
ing approaches. For a fair evaluation, all methods have been tested using the
same fixed set of parameters for all objects and datasets. Notice that some
of the methods also make use of RGB data (e.g., Drost-10-edge, Hodan-15,
Branchmann-16 and Kehl-16). Additional details about the evaluation met-
ric and tested methods can be found in [49]. Notice that the results also
includes preliminary work of this thesis published in [109], which become the
top scoring method and won the SIXD Challenge 2017 competition.
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Figure 5.7: Proposed method results in scenes from the BOP benchmark
datasets. Scene RGB data is shown in gray. Object models are shown in
color and inside a green bounding box. Notice that, for scenes with multiple
instances, only the most supported instance is used.
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Based on the step and parameter evaluation part, the proposed method
has been evaluated using 200 hypotheses refined by ICP. This setup, although
not providing the best possible recall, represents a good trade-off between
speed and recognition rates. Figure 5.7 shows some examples of the proposed
method results. Table 5.3 shows the result of the comparison.

As can be seen from the obtained results, the proposed method outper-
forms the rest of the solutions, obtaining an average recall of 79.5%. In
general, the proposed method performance surpasses the evaluated state-of-
the-art with a relative improvement of more than 6% with respect to the
preliminary work presented in Vidal-18 [109]. For all datasets, the obtained
average recalls show a significant improvement with respect to the state-of-
the-art, with a very notable boost on T-LESS and RU-APC. In particular,
for the RU-APC case, the proposed method obtains a relative improvement
of 19%, moving from 37.83% obtained by Kehl-16 [58] to 44.92%. Overall, the
obtained results show higher reliability for different types of objects, including
household objects, e.g., LM or TUD-L, polygon shapes, e.g., RU-APC, and
industrial-like pieces, e.g., T-LESS. In addition, results also suggest higher
robustness against occluded scenarios, e.g., LM-O and T-LESS. Comparing
different method types, the proposed method obtains the best recall within
the feature-based approaches and outperforms the template matching and
machine learning approaches. In detail, compared to the best feature-based
approach, the preliminary work in [109], the more-discriminative prepro-
cessing steps, improved re-scoring part and novel clustering approach shows
a clear improvement for all datasets. Additionally, the proposed method
moves Point Pair Features voting approaches away from the top template
matching technique (Hodan-15 [50]), especially for LM, IC-MI and RU-APC
datasets. Similarly, the method recall also improves with respect to the top
machine learning technique (Brachmann-16 [21]), in particular for the TUD-L
dataset, for which previously this method had the highest recall. Regarding
time performance, the proposed method has an average execution time of
0.99 seconds per target on an Intel i7-5930K. Notice that this performance
is obtained without using GPU.

Finally, we would like to notice that conclusions regarding the different
methods’ performance obtained from the benchmark [49] are significantly
different than those of previous results presented in state-of-the-art. In detail,
comparing the evaluations presented in [21, 22, 50], results lead to different
conclusions, especially regarding the performance of the method proposed by
Drost et al. [37], which seems underestimated in those previous cases. We
attribute this discrepancy to the improved quality of the benchmark [49] with
respect to the previous evaluation procedure, including a fixed training and
testing framework with wider object domain and increased number of testing
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targets, fixed parameter requirements and improved evaluation metric. For
these reasons, we did not evaluate the presented method against some other
related approaches, like [47], which used this previous evaluation procedure.

5.4 Performance Evaluation Using Depth and
Color

In this section, the proposed method using visual attention and color infor-
mation with the HSV and L, Hue metric is compared with the basic depth
only solution presented in Chapter 3 and the other state-of-the-art methods
tested in the BOP benchmark [49].

First, the method is evaluated on the LM-O [22, 46] dataset to analyze
the performance on a highly occluded dataset in detail. Results are shown
in Table 5.3. Examples of obtained results are shown in Fig. 5.8. As can be
seen, the proposed method greatly outperform all the methods for all cases.
In detail, the inclusion of visual attention principles and color information
to the method presented in Chapter 3 improves the recognition rate of all
objects, increasing the overall recall 9.34% reaching 71.21%. The biggest
improvement has been obtained for object 8, moving from 76% obtained by
using depth only to 89%. Similarly, object 12 has obtained an important
improvement of 10 points. It is interesting the case of object 11, for which
the last best approach was template matching [50], obtaining a boosting
from previous best method from 34% to 50%. In addition, the difficulty of
the occlusion cases and advantages of the proposed approach can be observed
comparing the difference between the results obtained by the other top six
approaches, with a range of values moving from 51.42% to 61.87%, while
the proposed approach obtains 71.21%. The value of proposed method for
occluded cases can also be observed comparing the Drost-10 and Drost-10-
edges approaches, for which the inclusion of the edge information do not
improve overall this dataset.
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Method 1 5 6 8 9 10 11 12 ALL
Proposed - HSV LoHue 69 89 56 89 84 50 50 73 71.21
Proposed - Depth Only 66 84 48 76 72 43 34 62 6187

Vidal-18 [109] 66 81 46 65 73 43 26 64 59.31
Drost-10-edge [1] 47 82 46 75 42 44 36 57 5495
Drost-10 [1, 37] 62 75 39 70 57 46 26 357 55.36
Brachmann-16 [21] 64 65 44 68 71 3 32 61 52.04
Hodan-15 [50] 54 66 40 26 T3 37 44 68 51.42
Brachmann-14 [22] 50 48 27 44 60 6 30 62 41.52
Buch-17-ppth [25] 29 63 18 35 60 17 5 30 36.96
Hodan-15-nr [50] 47 35 24 12 63 9 32 33 34.39
Kehl-16 [58] 39 47 24 30 48 14 13 49 3391
Buch-17-si [25] 54 63 11 2 16 9 1 3 2035
Buch-17-ecsad [25] 20 29 0 0 7 8 1 0 962
Tejani-14 [101] % 2 0 1 0 0 10 0 450
Buch-16-ppth [26] 4 0 0 2 11 1 1 1 2.28
Buch-17-shot [25] 2 7 0 O 1 1 1 O 1.45
Buch-16-ecsad [26] 1 3 0 2 2 0 0 0 0097

Table 5.3: Recall scores (%) for the Linemode Occlusion dataset [22, 43] as
part of the BOP benchmark [49] using the VSD metric with 7 = 20 mm and
6 = 0.3. Recall score for each individual object and for all the dataset are
reported. Objects are numerated as specified in [49)].
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Figure 5.8: Proposed method results in occluded scenes from the LM-O
datasets as part of the BOP Benchmark.

Second, the method robustness is analyzed for all datasets, as shown in
Table 5.4. In this case, the results also shows an outstanding improvement
on LM and RU-APC datasets along side a good improvements in T-LESS
and small improvement in IC-MI. In detail, results for LM dataset are clearly
boosted using color data moving from 90.73% obtained with depth only to
93.57% obtained using color data. Significantly better results are also ob-
tained for RU-APC dataset, augmenting from 44.92% to 51.08%. On the
other hand, the performance of the T-LESS datasets decrease dramatically
with respect to previously obtained results using depth only. The worse re-
sults can be attributed to the low quality color information of the model val-
ues and the lack of color features on the T-LESS scenes and objects. Overall,
the obtained results outperform most cases for which relatively high quality
color information is used, highly increasing the recognition rates and showing
robustness for most cases. However, the loss of performance on the T-LESS
also shows that the method is affected by very low quality color information.

Finally, it is interesting to notice that the method also shows better ro-
bustness for the TUD-L dataset, which uses different levels of light intensity,
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showing the robustness of the method against illumination changes. Overall,
the results shows the value of the proposed method to significantly improve
robustness on most colored scenes, specially for occluded cases, outperform-
ing all tested methods for most datasets.
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Chapter 6

Case Study: Automatic Robot
Path Integration with Offline
Programming and Range Data

In this chapter, the method presented in Chapter 3 is evaluated in depth
on a practical scenario. In detail, the presented object recognition method
is used to determine the pose of a workpiece element into an offline pro-
gramming(OLP) platform for automatic robot integration, defining a novel
automated offline programming solution (AOLP). This work has been jointly
done with Amir Kumar Bedaka, author of the OLP platform. Both authors
have equally contribute to the work, Amit worked on the AOLP architecture
and the author of this thesis worked on the methodology and vision proce-
dures. The combination of the autonomous object recognition method with
Amit’s flexible Offline programming platform defines an innovative, more
flexible and productive industrial manufacturing solution.

6.1 Introduction

Industrial manufacturing has long relied on human operators to perform
challenging and skilled tasks. Certainly, the introduction of industrial robotic
systems has dramatically improved the production level, taking over most
tasks with a predefined and repetitive nature. Applications such as pick and
place, welding, painting or gluing are some of the common jobs carried out
nowadays by robots. However, these tasks are usually programmed using
conventional methods, like using a teach pendant, in an online programming
manner on highly constrained environments. These integration processes
require stopping the workcell while expert operators program in situ the
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robot actions and trajectories for each specific task, spending a big amount
of time and resources on non-flexible solutions with a very limited range of
applications.

In view of the time, costs and difficulties associated with the manual on-
line programming and reprogramming of industrial robotic systems in manu-
facturing scenarios, methods based on CAD model simulation of robot inte-
gration arise, known as offline programming (OLP). These software platforms
provide all the necessary tools for a complete and realistic simulation of the
robot manufacturing environment by using precise CAD model designs. Us-
ing these simulation platforms, the robot program can be carefully designed,
planned, tested and generated out of the workcell, only requiring a brief stop
for the final program download. In [77], Mitsi et al. present an OLP sys-
tem including graphical simulation, robot kinematics, motion planning and
automatic code generation for welding operations. Additionally, Larkin et
al. [64] evaluate several OLP software packages used for welding, including
ABB Robotics, Delmia from Dassault Systems, a Matlab based OLP system,
and RinasWeld from Kranendonk Production System.

In the last decades, a significant amount of research has been done us-
ing commercial OLP platforms, such as KUKA Sim for Kuka, RobotStudio
for ABB, MotoSim for Motoman, Delmia from Dassault Systems, RobCAD
from Technomatix Technologies and Robotmaster from Jabez Technologies
[4, 88]. As an example, the OLP system proposed by [112] joins the geo-
metric functions of CATTA (e.g., curve/surface intersection, a projection of
the points onto the surface, etc.) with the simulation function of KUKA
Sim Pro (e.g., robot kinematics, collision detection, etc.). Their method fo-
cused on robotic drilling applications in aerospace manufacturing, improving
the position accuracy by using bilinear interpolations model and redundancy
resolution. Despite their efficiency, most commercial solutions are subjected
to high-cost licenses and a limited range of applications and improvement.
Some alternative solutions propose commercial general-purpose CAD pack-
ages to define more flexible and cost-effective platforms. Neto et al. explored
the most suitable way to represent the robot motion in CAD drawings us-
ing Autodesk Inventor, the automatic extraction of the motion data and
the mapping between virtual and real environment to generate the robot
program [78, 79]. Similarly, some platforms proposed to integrate mechan-
ical CAD features and robotics CAD models with SolidWorks Application
Programming Interface (API) [9, 70]. Regardless of their advantages with re-
spect to online programming methods, the OLP platforms highly depend on
a precisely defined workcell and still requires a significant amount of human
operation, including the selection of tag points (i.e. start and end positions)
for path planning and to solve singularity and collision related problems.
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Recently, Automated Offline Programming (AOLP) systems are gaining
attention in research, providing autonomous alternatives to manual or semi-
automatic OLP tasks [82]. These platforms provide significant advantages
such as automated modeling of the environment or singularity-free trajec-
tories by means of additional sensors and advanced techniques. Ames et
al. [6] develop an AOLP solution to automatically generate complete robot
programs without programming requirements to perform welding tasks. Sim-
ilarly, Polden et al. [85] presents an automatic module for Delmia that pro-
vides automatic tag generation and trajectory planning stages for welding
applications. Both systems can generate collision-free and singularity-free
trajectories for the complete working path. However, the aforementioned
AOLP systems still rely on precise CAD geometry of the working environ-
ment, defining error-prone and non-flexible solutions that require a high level
of human intervention. These systems require a specifically designed environ-
ment or manual calibration of the CAD models for each different workpiece
and environmental setup, which become not cost-effective in the long run.
In this respect, the visual understanding of the environment is an important
step towards a more flexible and efficient system.

In the manufacturing and production industries, machine vision has been
widely used in different applications [73]. Many types of vision systems
and sensors have been proposed to provide reliable solutions according to
the particular requirements of individual applications. Some common exam-
ples include automatic inspection [81] or robot guidance [35]. In particular,
the object recognition problem has been deeply studied towards fully au-
tonomous systems which can work independently of human operators [7].
Solutions based on 2D visual object recognition have been successfully applied
for simple pick and place operations or random bin-picking tasks [106]. How-
ever, these methods are still affected by environment illumination changes,
background clutter, and low robustness. On the other hand, 3D recogni-
tion systems based on range data have been proposed, which are robust to
illumination and show relatively good results under clutter and occlusion
environments [42].

Recently, these intelligent vision-based solutions have advanced on au-
tonomous manufacturing techniques, which do not require robot program-
ming. In this direction, open-source robotics frameworks such as ROS Indus-
trial [2] provide an extensive set of packages for autonomous manufacturing
and simulation. However, these autonomous methods face several yet-to-
be-solved intrinsic challenges related to real-time decision and sensors data
interpretation, such as working range or camera view limitations, which are
not faced by OLP systems. These challenges generate severe difficulties to the
real applicability of these autonomous solutions [13], which still limit their
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application to simple tasks, like pick and place [32, 38|, or constrained envi-
ronments [56]. In this sense, AOLP systems still stand out as a compromise
solution for the manufacturing industry.

Vision-based techniques have also been proposed to automate OLP func-
tions. Larking et al. proposed to use Time of Flight (TOF) sensors to
map the workcell 3D environment for motion planning without using CAD
data [63], effectively avoiding specific-purpose designs and CAD models cal-
ibration. However, their system does not provide precise information about
the workpiece for automated manufacturing planning operations. In a dif-
ferent direction, Maiolino et al. proposed an AOLP solution for workpiece
detection [71]. Their method connects the functions of a commercial offline
RobotStudio software, by means of a specifically developed add-on, with an
RGB-D recognition module using a UDP socket interface. Their work only
analyzed the sensor performance in different illuminations and did not pro-
vide results regarding the performance of the system. One of their method’s
limitations is the nature of the object recognition approach, which requires
an isolated object and relies on a segmentation step. This preprocessing step,
based on plane filtering, increases the system complexity and may limit its
performance. Another crucial limitation comes from the proposed system
architecture using a UDP socket communication between the vision module
and the commercial software. This add-on solution limits the system applica-
bility and extension capability, making the platform unsuitable for advanced
fully integrated tasks and control strategies that are required for complex
intelligent robotic manufacturing, such as visual servoing [66] or automatic
inspection [12] techniques.

This chapter presents a novel and more flexible AOLP solution that fully
integrates a state-of-the-art 6D pose estimation approach into a flexible OLP
platform, defining a novel solution that does not require the manual calibra-
tion of the workpiece position and can be used or integrated with other
systems for advance intelligent manufacturing implementations. In detail,
the contribution of this work is a novel AOLP system in an integrated mod-
ular architecture, which joints the benefits of latest three-dimensional vision
recognition with a versatile OLP platform, proposing a more efficient and
flexible solution to overcome the aforementioned limitations. In contrast with
other OLP and AOLP approaches, the proposed solution does not require
stopping the workcell, complex workpiece calibration procedures and specifi-
cally designed or constrained environments to determine the target workpiece
in the robot cell. In the one hand, the autonomous three-dimensional vision
module determines the position of the object in unconstrained scenes, in a
global manner, without requiring pre-segmentation steps. On the other hand,
the proposed fully integrated AOLP architecture overcomes the limitations
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of previously proposed approaches [72, 78] by allowing our system to be cou-
pled with other advanced intelligent solutions. Some potential applications
include high precision tasks using visual servoing [66] and integrated manu-
facturing process with automatic optical inspection (AOI) [12], which require
a fully integrated framework. To archive this characteristics, the proposed
system has been based on a non-commercial and cost-effective OLP solution
developed on Open Cascade opensource libraries, including an efficient path
generation with automated tag creation from CAD primitives. On top of
that, the AOLP platform bases its three-dimensional vision capabilities on
a highly reliable Point Pair Features (PPF) approach [109] that allows an
efficient and robust autonomous localization of the workpiece. The proposed
system effectiveness and robustness is evaluated in a real-world environment
with two different methodologies. First, the relative error of the system
is computed for the X, Y, and Z directions. Second, the absolute error of
the system is evaluated for multiple random poses against a human defined
ground truth. The method robustness is discussed and analyzed with addi-
tional experiments for different illumination and object materials. Finally,
the overall system features and precision are compared with other existing
methods, which reveals the advantages of the proposed system with respect
to the other available solutions. Overall, the presented system defines a
novel, flexible and efficient fully integrated platform that focuses on reducing
integration time and increasing productivity in manufacturing.

6.2 System Overview

Offline programming (OLP) systems are semi-automated platforms that rely
on accurate CAD designs to simulate industrial manipulator manufacturing
tasks out of the workcell, in order to avoid costly and time-consuming proce-
dures on the robot production line. This CAD information is usually provided
through specific-purpose designs or complex calibrations of the robot environ-
ment. In the presented novel automated approach, a depth sensor (Kinect)
is employed to extract three-dimensional information of the environment to
autonomously locate the workpiece on the workcell, regardless of illumination
and background clutter. This object recognition capability is integrated with
a user-friendly OCC-based OLP platform, which includes an automatic path
planning based on CAD information, in order to plan, simulate, analyze and
generate robot control code for manufacturing process on an industrial ma-
nipulator (Denso 6556). The architecture of the proposed system is presented
in Fig. 6.1.
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Figure 6.1: Architecture of the proposed platform.

6.2.1 Kinect Sensor

Kinect is an RGB-D sensor, capable of providing registered color and depth
data, introduced in 2010 by Microsoft as a game device for the Xbox 360 plat-
form. In 2012 a similar version, named “Kinect for Windows”, was released
for commercial use.

The sensor is based on infrared (IR) structured-light technology [41]. As
shown in Fig. 6.2, the system uses one IR laser projector and two cameras.
One camera is used to capture the color image (RGB data) and the other
camera, designed to capture only IR light, is used to extract the depth data
from the projected IR structured pattern. In addition, the sensor has a
microphone array and a tilting motor.

Due to its relatively good precision, considerably high frame rate and low-
cost, the sensor quickly became popular in research fields beyond computer
entertainment. In addition, the usage of IR light for active sensing, provides
depth data independent of visible illumination, working even in absence of
light. These characteristics make the Kinect sensor a good choice for the
proposed system. Nevertheless, any other range sensor with similar or better
characteristics can be employed.

?

Figure 6.2: Kinect’s hardware.
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6.2.2 Off-line Programming Platform

The system uses at its core the flexible OLP platform proposed by Amit et
al. [10]. This user-friendly OLP platform allows an efficient and automatic
path generation, simulation, robot code generation and robot execution. The
platform is based on the OCC library, which has become a standard solution
for the design and development of open-source application oriented to CAD
design and OLP platforms. Using simple mouse interactions, the platform
allows to automatically generate robot trajectories by extracting and process-
ing the CAD features of a workpiece with advanced techniques embedded in
the OCC libraries, without the need of any commercial CAD packages. In
addition, the proposed platform uses a virtual environment and simulates the
robot trajectory in order to check issues related to the manipulator’s reach-
ability, possible collision along the path and singularities. After simulation,
the robot program can be generated and sent directly to an industrial robot
manipulator.

6.3 AOLP Integration

The AOLP automatic path planning system has been developed by the in-
tegration of the object recognition vision module with the flexible OLP plat-
form. The flow chart of the proposed AOLP platform is shown in Fig. 6.3.

Initially, the OLP core system, which contains the CAD model and envi-
ronment data of the process, requests the object pose to the vision module,
which extracts the position and rotation of the object using the range sensor.
This information is processed by the core system, which treats the pose with
respect to the vision sensor frame. Consequently, the platform transforms
the 6D pose data with respect to the robot frame and loads the relative
object CAD model at the same position in the virtual environment. This
task is performed autonomously, independently of the object pose and light
conditions of the environment. After the recognition of the object pose, the
OLP platform is able to generate the targeted path automatically extracting
the CAD information.
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Figure 6.3: Flowchart of the AOLP platform.

6.3.1 Object Recognition

For this system, we propose to use a variation of the method presented in
Chapter 3 using depth only. The method includes a Point-to-Plane Iterative
Closest Point (ICP) [67] refinement step to ensure the maximum accuracy
from the sensor data. In detail, the optimal transformation 7Y;; is defined by
Eq. 6.1,

T¢;; = argmin Tm; — s;) -1y 6.1
it = argn ;(( ) ;) (6.1)

where T' is the model-to-scene transformation matrix, m; is a point on the
model surface, s; is the scene destination point and n; is the unit normal on
s;. For each new iteration, the destination point s; is defined as the nearest
scene point to the last iteration transformed model point m;.

Overall, this solution defines an accurate and reliable 6D pose estima-
tion module, focused on the requirements of industrial scenes, robust to light
and background changes with relative robustness to unexpected partially oc-
cluded situations. Figure 6.4 shows a high-level flowchart of the proposed
solution, where the modeling and matching parts are based in the steps pre-
sented in Chapter 3.
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Figure 6.4: Flowchart of the 6D pose estimation module.

6.3.2 Workpiece Transformation

The pose estimation algorithm obtains and transmits precise information of
the workpiece pose with respect to range sensor frame. This object pose
information is represented as the homogeneous matrix T, € SE(3), which
represents the transformation of the object model to the camera frame, ob-
tained from the three-dimensional recognition module. This transformation
is transmitted to the OLP core system, which further transforms the object
pose from the camera frame to the robot global frame, as shown in Fig. 6.5.
This camera-to-robot transformation, #Tx € SFE(3), specifies the relative po-
sition and rotation of the range sensor with respect to the robot pose, which
remains constant for any given industrial manipulator and range sensor fixed
setup. This transformation is obtained by a calibration procedure for which
a known pattern, i.e. a calibration grid, is attached to the robot end-effector
and detected in several positions solving the well-known AX = X B equa-
tion [98, 104], analogously to the hand-eye calibration with a fixed camera
and a moving calibration grid. In addition, methods using depth data can
also be applied. The reader can refer to [34, 51, 98, 104] for a detailed
explanation and solutions to the hand-eye calibration problem. Therefore,
camera-to-robot transformation T, € SF(3) is defined by Eq. 6.2.

BTy = BT “Tp (6.2)

After the object transformation is obtained, the OLP core loads the re-
lated CAD model to its actual position in the simulated environment, defin-
ing an accurate representation of the robot workcell.
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Figure 6.5: Camera and object position with respect to the robot.

6.3.3 Path generation by OLP

Once the CAD model (workpiece) is loaded into the environment, the robot
path can be automatically extracted from the CAD information to perform
the desired manipulation tasks. Using the approach proposed by Amit et
al. [10, 11], the user indicates the working tasks with respect to the CAD
model structure using an intuitive and friendly interactive platform. Using
a mouse or a tactile screen, the user can automatically extract path refer-
ences (tags) by selecting desired abstract CAD features, such as a face, wire,
edges or vertexes, easily indicating the targeted working zone on the work-
piece. For example, the user can select a face of the CAD object and indicate
to work on its relative edges in few clicks, as shown in Fig. 6.6. Once, all
target zones are selected, the related tag’s edges are automatically analyzed
and connected to generate a consistent path. Reader can refer to the work
of Amit et al. [10, 11] for further details about path generation.

T

Choose edges

Generate path

Figure 6.6: Steps to generate the robot path using the OLP platform pro-
posed by Amit et al. [10, 11]

Overall, the proposed AOLP platform allows the user to generate a robot
path, simulation, and program mapped with an industrial manipulator with-
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out requiring to define the workpiece position. The complete execution pro-
cess is shown in Fig. 6.7. Initially, the OLP platform sends an acquisition
request to the vision module in order to receive the object pose information
with respect to the real environment. Consequently, the model is loaded in
the same position within the virtual environment. At this point, the user
makes use of the platform interface to indicate the desired working path. Af-
ter these actions, the robot path is automatically generated. The simulation
is performed to verify the correctness of all the robot movements before map-
ping it with the real industrial robot. Finally, the robot program is executed
on the real robot performing the desired task.

Object pose Pose Load CAD
request estimation model i
|

Path | | Userindicate
generation path

Simulation =

Robot
execution

Figure 6.7: System’s execution steps.

6.4 Experimental Results

The proposed AOLP system was fully implemented in C++ using OCC [3]
and Point Cloud Library (PCL) [94] open-source libraries. The system eval-
uation is divided into four sets of experiment. The first experiment evaluates
the relative error of the system while moving the robot on X, Y, and Z direc-
tion. The second experiment evaluates the absolute error against a human
defined ground truth. Third and fourth experiments analyze the robustness
of the system for different illumination levels and object materials. All exper-
iments have been conducted on a standard setup with the industrial robot
manipulator working on a flat surface, as shown in Fig. 6.8. The Kinect
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sensor was placed at about 30 to 35 degrees and 100cm away from a Denso
6556 robot, within the best resolution distance and far enough to avoid ob-
structing the robot working space. Notice that all experiments have been
conducted on scenarios with uncontrolled clutter. However, the robustness
of the system against background clutter has not been analyzed in these tests
as an exhaustive analysis and comparison of the object recognition module
in terms of recognition rate, clutter and occlusion performance can be found
in Chapter 6. In addition, due to the nobility of the presented AOLP so-
lution, relying on three-dimensional object pose estimation, to the best of
our knowledge, no similar AOLP system experimentation results has been
presented before. Therefore, we provide a comparison table with different
method’s features, discussing the strengths and limitations of the proposed
method against other available solution for industrial manufacturing.

Figure 6.8: (a) CAD Model; (b) Kinect sensor with CAD model recognized.

6.4.1 Evaluation of the System Error

First, the relative error of the system has been evaluated for X, Y, and Z
directions. In this experimentation, the workpiece object has been attached
to the end-effector and a fixed point on the workpiece has been selected.
Then, repeatedly, the robot manipulator is moved by one fixed step on a
given axis, defining the relative error of the system as the difference between
the displacement of a workpiece fixed point and the predefined step distance.
This test has been conducted for 5mm steps on the three main robot X, Y
and 7 axis. Fig. 6.9 and Table. 6.1 shows the obtained results. As can be
seen, the system provides similar errors for all axis and all tested directions,
showing a maximum relative error of £2mm. In addition, the system shows
a stable performance, with an overall Euclidean error smaller than 2.2mm in
all directions.
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Figure 6.9: Relative error of the system with respect to the industrial ma-
nipulator for 5mm steps. (a) X-axis; (b) Y-axis; (c) Z-axis.

Second, the absolute error of the system with respect to a manually de-
fined ground truth has been evaluated. In this experiment, the generated
system path for 10 randomly located poses has been compared against a hu-
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Table 6.1: Relative error with respect to the industrial manipulator for 5mm
steps on X, Y and Z robot axis. Results in mm.

Test Mean error Std. deviation

Dir. X Y Z X Y Z
X 0.490 -0.159 -0.793 0.676 0.472 0.688
Y 0.690 -0.450 -0.595 0.688 0.318 0.581
Z 0.036 0.108 0.014 0.854 1.012 1.310

man defined ground truth, using a teach pendant. For each pose, 10 different
tests have been conducted, with a total of 100 evaluations. The evaluation
process is as follows: Initially, for a given random located object, the ground
truth path, defined by 4 discrete distinguishable points, was manually found
using the teach pendant. After that, the AOLP platform starts the object
recognition module and the CAD model is properly located in the OLP plat-
form, where the user can select the path. After the selection, the path is
automatically generated from the CAD information and a simulation of the
robot motion is performed, allowing the user to check the correctness of the
trajectory. Finally, the automatically generated robot program is executed
on the Denso industrial manipulator. Then, the system error is computed by
comparing the captured ground truth reference points with the corresponding
generated path. Figure 6.10 shows the whole process diagram.

Object recognition
module
l Ground truth
- (teach pendant)
Path planning and
generation
l Y
Compare ground truth

Robot simulation

and experimental results

r 3

A

Implementation on
industrial robot

Figure 6.10: Steps to compare the performance of the platform.
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Table 6.3: Overall absolute error for all poses, with 10 test per pose using 4
reference points. Results in mm.

Mean error Std. deviation
X Y Z X Y Z
2.320 2.509 2.297 1.025 1.055 1.055

Table 6.2: Absolute error per pose, with 10 tests per pose using 4 reference
points. Results in mm.

Pose Mean error Std. deviation
X Y Z X Y Z

1 1.867 1.507 2.805 0.686 1.136 0.796
2 1.987 2312 2.603 0.869 0.582 0.863
3 2550 2.355 2.710 1.934 0.491 1.122
4 2908 1.685 2.358 1.065 1.116 1.160
) 2474 3.043 2408 0.562 1.072 0.818
6 2017 3.317 0.876 0.655 1.253 1.093
7 2517 3.591 2136 1.566 0.538 1.348
8 2944 1.734 2.091 0.467 0.663 0.751
9 1.678 2.696 3.122 0.305 0.880 0.574
10 2.264 2.853 1.866 0.945 0.344 0.625

The obtained results for each pose are presented in Table 6.2. The overall
system results for all poses are presented in Table 6.3. Figure 6.11 shows the
results for one test of an automatically obtained trajectory on simulation
and real-world scenario. Supporting previous experimentation, the obtained
absolute error between the system path and human defined ground truth
also shows similar results for all axis. Overall the systems show a mean
positive error of around 2mm with an std. deviation of 1mm, for the X,
Y and 7Z axis. Similarly, the systems show stable results for all different
poses, obtaining consistent precision error for all cases. In this direction,
the always positive overall consistent mean error of around 2.4mm, ranging
from 0.8mm to 3.6mm for different poses, can be probably attributed to the
camera-to-robot calibration.
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Figure 6.11: Virtual and real-world results for one trajectory generated by
the AOLP system.

6.4.2 System Robustness Analysis

The performance and robustness of the three-dimensional vision system ca-
pabilities, in terms of recognition rate, rely solely on the vision module and
has been already extensively analyzed on a comprehensive range of variate
household and industrial objects for more than 60000 challenging test images
in Chapter 6. These results, reaching recognition rates up to 100% for non-
occluded cases, shows the validity and robustness of the object recognition
method for a wide range of different scenarios. In this sense, this charac-
teristic has been widely evaluated on literature joining efforts from different
authors, with solid and detailed knowledge available, therefore no further
tests have been conducted in this direction.

In another direction, focusing on the proposed integrated AOLP system
performance for industrial manufacturing, we conduct a set of experiments to
evaluate the precision performance of the integrated system against different
illumination levels and different object materials. First, the system was tested
under 6 different light conditions, from a highly illuminated environment to
a completely dark scene, as shown in Fig. 6.12. In these experiments, no
additional modification or parameter tuning has been used, following exactly
the same procedures described in the previous section for the absolute error.
Experimental results, presented in Fig 6.13, shows the robustness of the
proposed system for all different levels of illumination, obtaining consistent
results with previous experiments. Although local minor variations occur,
no critical drop of the system performance can be observed for different light
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conditions. These results show the validity of the proposed integrated system
for working on different illumination environments within the same range of
precision.

1 0

Figure 6.12: Different tested scene illumination levels.
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Figure 6.13: System error for different illumination levels.
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Second, the performance of the system for different object materials is
evaluated. In this experiment the proposed system precision is compared
for 4 different objects made of foam, wood, metal and plastic, as shown in
Fig. 6.14. The objects where located on the same working position and tested
on the same light conditions. Experimental results are presented in Fig. 6.15.
As can be seen, the system shows robustness against all 4 different cases
with non-critical minor variations between materials. Specifically, we can
notice a slightly higher precision on wood and metal than plastic, which can
be arguably attributed to their somehow smoother surface. In addition, the
foam object shows an slightly higher error, which we attribute to the softness
and non-rigidity of the object material. Overall, the obtained results show
the robustness for different object materials with consistent precision.

Figure 6.14: Tested objects with different surface materials.
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Figure 6.15: System error for objects made by different types of material.
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6.4.3 Comparison and Discussion

Increasing demands of productivity on industrial manufacturing require the
more precise definition of target workpieces and a higher level of control on
manipulation and inspection processes. The challenges defined by tasks of
different nature and high precision operations request novel automatic man-
ufacturing approaches that can integrate benefits from several systems and
techniques, defining innovative solutions to fulfill the requirements of those
complex manufacturing processes. Some examples include; integrated sys-
tems with cooperative robotics [27] for highly complex procedures, visual
servoing techniques [66] for high precision tasks or novel 3D-based render-
ing techniques for automated optical inspection (AOI) [12]. These solutions
could be employed to boost the productivity of still challenging industrial
operations such as insertion, high precision welding, 3D laser-cutting, in-
spection of catastrophic failure and quality defects and dual arm robotized
assembly. In this direction, most available OLP systems, relying on commer-
cial platforms, lack of the necessary characteristics and flexibility required for
this type of integration. Although an autonomous system has been proposed
as an alternative and optimal solution, at present, their capabilities are lim-
ited to simple tasks and they have not yet reached the necessary robustness
required for complex manufacturing.

The presented solution proposes a novel approach that integrates the
autonomous recognition capabilities of the three-dimensional vision systems
with the user-friendly and workcell-free programming advantages from OLP
platforms, defining a more productive and flexible solution. In this sense,
the proposed system is based on a modular, independent and adaptable OLP
platform, allowing to define a fully integrated architecture that can be cou-
pled with other systems and extended its characteristics to face more chal-
lenging and complex manufacturing procedures. These characteristics can
be in part archived by the implementation of the open CAD technology pro-
vided by Open Cascade. Therefore, the proposed system does not only join
the autonomous workpiece detection capabilities of the three-dimensional vi-
sion but define a platform with an integrated architecture that can be applied
and extended to a variety of directions and tasks, increasing productivity by
means of a more efficient automatic robot integration.

The proposed method features are compared against other available state-
of-the-art approaches for industrial manufacturing on 3D objects in Table 6.4.
As can be seen, the proposed method combines most features while still pro-
viding a competitive precision. In this sense, solutions using custom au-
tomated path generation approaches are only designed to be applied to a
limited range of cases. These specific solutions, usually costly and time-
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consuming to program, are based on constrained scenarios and are difficult
to change for other purposes. In another direction, OLP methods provide
tools to simplify the generation of robotic paths for all types of scenarios.
However, these methods have a very limited range of automatic functions,
rely usually on non-flexible commercial platforms and require a precise def-
inition of the CAD environment, requiring costly human interventions and
specific-purpose designs. In addition, their proposed architectures show limi-
tations regarding their extension and integration into other systems. In order
to overcome the problems related to the environment and workpiece defini-
tion, methods using object recognition can help to generalize automated ap-
proaches to various scenarios. The proposed combination of the OCC-based
OLP platform with a state-of-the-art object recognition method by using a
modular fully integrated architecture represents a compromise approach to
most system limitations defining a more flexible and productive manufactur-
ing solution. In addition, the proposed system has shown robustness in terms
of vision recognition rates and overall system precision in different scenarios,
showing their values for practical industrial applications.

Overall, the obtained results show the effectiveness and viability of the
proposed system, showing consistent results in all experiments and tested
scenarios, with a relatively good accuracy for low-demanding precision ma-
nipulation tasks. In addition, the flexibility of the integrated architecture
allows the system to be easily coupled with more accurate 3D sensors, or
integrated with other systems, such as visual servoing [66], to extend its
functionality to automatic high precision tasks. On top of that, the intuitive
and user-friendly platform allows the user to define the robot path, perform
the simulation and generate the robot code with a few simple steps, defining
a flexible solution for all types of requirements and manufacturing tasks.
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Chapter 7

Conclusions

This thesis proposes and analyses novel solutions based on the top per-
forming Point Pair Features voting approach to define a novel feature-based
method for robust recognition and 6D pose estimation of partially occluded
objects in cluttered scenes. First, novel preprocessing steps to extract rel-
evant point cloud data, a more efficient feature matching approach, which
mitigates quantization errors, and an improved hierarchical clustering step
are proposed. In addition, this is complemented with several postprocessing
steps, including a novel view-dependent re-scoring process for candidate hy-
potheses and efficient verifications steps to discard false-positive cases. These
processes are presented in an integrated local feature-based pipeline divided
into six consecutive steps. Second, an innovative solution based on visual
attention and color cues to boost performance on highly occluded cases is
proposed. In this direction, a novel visual attention, weighted matching and
rescoring steps for the Point Pair Features voting approach using color infor-
mation are introduced. Third, the method is analyzed for different steps and
parameters showing the improvement of the proposed solutions and the ro-
bustness of the method. The performance of the method is evaluated against
14 state-of-the-art solutions on comprehensive publicly available benchmark
including different types of object in highly cluttered scenes with occlusions.
The presented results show that the proposed method using depth only out-
performs all the other methods for all datasets, obtaining an overall average
recall of 79.5%. In addition, the best result obtained for occluded cases using
color information, with the HSV color space and Lo Hue metric, shows the
higher robustness of the method, reaching an overall recall of 71.21% for the
Linemod occluded dataset. In particular, the method shows an outstand-
ing improvement of up to 30% on relatively low occlusion levels between
30% to 70%. In addition, the method shows higher robustness for most col-
ored datasets, even with illumination changes. However, low colored scenes
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and bad colored objects can dramatically decrease the performance of the
method. Fourth, a practical case study is presented where the proposed
recognition method is integrated with a flexible offline programming plat-
form to define a novel automated offline programming solution for intelligent
manufacturing. The real-world testing results and feature comparison with
other existing solutions show the validity of the method and its advantages
with respect to other state-of-the-art solutions. Overall, the proposed sys-
tem represents a more flexible, cost-effective and productive alternative to
the existing approaches, showing the benefits and potential of the object
recognition method, opening the door to highly advanced visually-guided
autonomous solutions.

4



Bibliography

1]

S

=S

MVTec HALCON. https://www.mvtec.com/halcon/. Accessed: 2018-
06-07.

ROS-Industrial. https://rosindustrial.org/. Accessed: 2018-09-10.
OPEN CASCADE. www.opencascade.com, 2017. Accessed 02-12-2018.

Sett A. and K Vollmann. Computer based robot training in a virtual
environment. In IEEE International Conference on Industrial Tech-
nology, 2002. IEEE ICIT 02, volume 2, pages 11851189, Dec. 2002.

A. Aldoma, M. Vincze, N. Blodow, D. Gossow, S. Gedikli, R. B. Rusu,
and G. Bradski. Cad-model recognition and 6dof pose estimation using
3d cues. In 2011 IEEE International Conference on Computer Vision
Workshops (ICCV Workshops), pages 585-592, Nov 2011.

A. L. Ames, E. M. Hinman-Sweeney, and J. M. Sizemore. Automated
generation of weld path trajectories. In (ISATP 2005). The 6th IEEE
International Symposium on Assembly and Task Planning: From Nano
to Macro Assembly and Manufacturing, 2005., pages 182—-187, July
2005.

Alexander Andreopoulos and John K. Tsotsos. 50 years of object recog-
nition: Directions forward. Computer Vision and Image Understand-
ing, 117(8):827 — 891, 2013.

Farshid Arman and Jake K Aggarwal. Model-based object recognition
in dense-range images—a review. ACM Computing Surveys (CSUR),
25(1):5-43, 1993.

Khelifa Baizid, Sasa Cukovic, Jamshed Igbal, Ali Yousnadj, Ryad Chel-
lali, Amal Meddahi, Goran Devedzic, and Ionut Ghionea. IRoSim: In-
dustrial robotics simulation design planning and optimization platform

based on cad and knowledgeware technologies. Robotics and Computer-
Integrated Manufacturing, 42:121 — 134, 2016.

75



[10]

[11]

[12]

[18]

[19]

[20]

A. K. Bedaka and C. Y. Lin. Autonomous path generation platform
for robot simulation. In 2017 International Conference on Advanced
Robotics and Intelligent Systems (ARILS), pages 63—68, Sept 2017.

A K Bedaka and C-Y Lin. Cad-based robot path planning and simu-
lation using open cascade. Procedia Computer Science, 133:779-785,
July 2018.

Amit Kumar Bedaka, Alaa M. Mahmoud, Shao-Chun Lee, and Chyi-
Yeu Lin. Autonomous robot-guided inspection system based on offline
programming and rgh-d model. Sensors, 18(11), Nov 2018.

Michael Beetz, Ulrich Klank, Ingo Kresse, Alexis Maldonado, Lorenz
Mosenlechner, Dejan Pangercic, Thomas Riihr, and Moritz Tenorth.
Robotic roommates making pancakes. In Humanoid Robots (Hu-
manoids), 2011 11th IEEE-RAS International Conference on, pages
529-536. IEEE, 2011.

Mohammed Bennamoun and George J Mamic. Introduction. In Object
Recognition, pages 3—28. Springer, 2002.

Paul J Besl. The free-form surface matching problem. In Machine
vision for three-dimensional scenes, pages 25-71. Elsevier, 1990.

Paul J. Besl and Ramesh C. Jain. Three-dimensional object recogni-
tion. ACM Comput. Surv., 17(1):75-145, March 1985.

Paul J Besl and Neil D McKay. Method for registration of 3-d shapes.
In Sensor Fusion IV: Control Paradigms and Data Structures, volume
1611, pages 586-607. International Society for Optics and Photonics,
1992.

T. Birdal and S. Ilic. Point pair features based object detection and
pose estimation revisited. In 2015 International Conference on 3D
Vision, pages 527-535, Oct 2015.

Christopher M. Bishop. Pattern Recognition and Machine Learning.
Springer-Verlag New York, 2006.

Jonathan Blackledge and Dmitryi Dubovitskiy. Object detection and
classification with applications to skin cancer screening. ISAST Trans-
actions on Intelligent Systems, 1:34-45, 2008.

76



[21]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

E. Brachmann, F. Michel, A. Krull, M. Y. Yang, S. Gumhold, and
C. Rother. Uncertainty-driven 6d pose estimation of objects and scenes
from a single rgb image. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 3364-3372, June 2016.

Eric Brachmann, Alexander Krull, Frank Michel, Stefan Gumbhold,
Jamie Shotton, and Carsten Rother. Learning 6d object pose estima-
tion using 3d object coordinates. In David Fleet, Tomas Pajdla, Bernt
Schiele, and Tinne Tuytelaars, editors, Computer Vision — ECCV 201/,
pages 536-551, Cham, 2014. Springer International Publishing.

Inés Bramao, Alexandra Reis, Karl Magnus Petersson, and Luis Faisca.
The role of color information on object recognition: A review and meta-
analysis. Acta Psychologica, 138(1):244 — 253, 2011.

Rodney A. Brooks. Symbolic reasoning among 3-d models and 2-d
images. Artificial Intelligence, 17(1):285 — 348, 1981.

A. G. Buch, L. Kiforenko, and D. Kraft. Rotational subgroup voting
and pose clustering for robust 3d object recognition. In 2017 IEEE

International Conference on Computer Vision (ICCV), pages 4137—
4145, Oct 2017.

Anders G. Buch, Henrik G. Petersen, and Norbert Kriiger. Local shape
feature fusion for improved matching, pose estimation and 3d object
recognition. SpringerPlus, 5(1):297, Mar 2016.

Fabrizio Caccavale and Masaru Uchiyama. Cooperative Manipulators,
pages 701-718. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

L. Caruso, R. Russo, and S. Savino. Microsoft kinect v2 vision sys-
tem in a manufacturing application. Robotics and Computer-Integrated
Manufacturing, 48:174 — 181, 2017.

Yang Chen and Gérard Medioni. Object modelling by registration of
multiple range images. Image and vision computing, 10(3):145-155,
1992.

C. Choi and H. I. Christensen. 3d pose estimation of daily objects
using an rgb-d camera. In 2012 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 3342-3349, Oct 2012.

Changhyun Choi and Henrik I. Christensen. Rgb-d object pose estima-
tion in unstructured environments. Robotics and Autonomous Systems,
75:595 — 613, 2016.

77



[32]

[34]

[35]

[37]

[39]

[40]
[41]

N. Correll, K. E. Bekris, D. Berenson, O. Brock, A. Causo, K. Hauser,
K. Okada, A. Rodriguez, J. M. Romano, and P. R. Wurman. Anal-
ysis and observations from the first amazon picking challenge. [EFEFE

Transactions on Automation Science and Engineering, 15(1):172-188,
Jan 2018.

Jian S. Dai. Euler—rodrigues formula variations, quaternion conjuga-
tion and intrinsic connections. Mechanism and Machine Theory, 92:144
- 152, 2015.

Konstantinos Daniilidis. Hand-eye calibration using dual quaternions.
The International Journal of Robotics Research, 18(3):286-298, 1999.

G. N. Desouza and A. C. Kak. Vision for mobile robot navigation: a
survey. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 24(2):237-267, Feb 2002.

B. Drost and S. Ilic. 3d object detection and localization using multi-
modal point pair features. In 2012 Second International Conference on
3D Imaging, Modeling, Processing, Visualization Transmission, pages
9-16, Oct 2012.

B. Drost, M. Ulrich, N. Navab, and S. Ilic. Model globally, match lo-
cally: Efficient and robust 3d object recognition. In 2010 IEEE Com-

puter Society Conference on Computer Vision and Pattern Recognition,
pages 998-1005, June 2010.

Clemens Eppner, Sebastian Hofer, Rico Jonschkowski, Roberto Martin-
Martin, Arne Sieverling, Vincent Wall, and Oliver Brock. Lessons from
the amazon picking challenge: Four aspects of building robotic systems.
In Proceedings of the 26th International Joint Conference on Artificial
Intelligence, IJCAT'17, pages 4831-4835. AAAI Press, 2017.

Mark Everingham, S. M. Ali Eslami, Luc Van Gool, Christopher K. I.
Williams, John Winn, and Andrew Zisserman. The pascal visual object
classes challenge: A retrospective. International Journal of Computer
Vision, 111(1):98-136, Jan 2015.

Mark D Fairchild. Color appearance models. John Wiley & Sons, 2013.

Jason Geng. Structured-light 3d surface imaging: atutorial. Adv. Opt.
Photon., 3(2):128-160, Jun 2011.

78



[42]

[44]

[45]

[47]

[48]

[49]

Y. Guo, M. Bennamoun, F. Sohel, M. Lu, and J. Wan. 3d object
recognition in cluttered scenes with local surface features: A sur-
vey. IEEE Transactions on Pattern Analysis and Machine Intelligence,

36(11):2270-2287, Nov 2014.

S. Hinterstoisser, C. Cagniart, S. Ilic, P. Sturm, N. Navab, P. Fua,
and V. Lepetit. Gradient response maps for real-time detection of tex-
tureless objects. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 34(5):876-888, May 2012.

S. Hinterstoisser, S. Holzer, C. Cagniart, S. Ilic, K. Konolige, N. Navab,
and V. Lepetit. Multimodal templates for real-time detection of
texture-less objects in heavily cluttered scenes. In 2011 International
Conference on Computer Vision, pages 858-865, Nov 2011.

S. Hinterstoisser, V. Lepetit, S. Ilic, P. Fua, and N. Navab. Dominant
orientation templates for real-time detection of texture-less objects.
In 2010 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pages 22572264, June 2010.

Stefan Hinterstoisser, Vincent Lepetit, Slobodan Ilic, Stefan Holzer,
Gary Bradski, Kurt Konolige, and Nassir Navab. Model based train-
ing, detection and pose estimation of texture-less 3d objects in heavily
cluttered scenes. In Kyoung Mu Lee, Yasuyuki Matsushita, James M.
Rehg, and Zhanyi Hu, editors, Computer Vision — ACCV 2012, pages
548-562, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

Stefan Hinterstoisser, Vincent Lepetit, Naresh Rajkumar, and Kurt
Konolige. Going further with point pair features. In Bastian Leibe, Jiri
Matas, Nicu Sebe, and Max Welling, editors, Computer Vision — ECCV
2016, pages 834—848, Cham, 2016. Springer International Publishing.

Tomés Hodari, Jifi Matas, and Stépan Obdrzalek. On evaluation of
6d object pose estimation. In Gang Hua and Hervé Jégou, editors,
Computer Vision — ECCV 2016 Workshops, pages 606619, Cham,
2016. Springer International Publishing.

Tomas Hodan, Frank Michel, Eric Brachmann, Wadim Kehl, Anders
GlentBuch, Dirk Kraft, Bertram Drost, Joel Vidal, Stephan Ihrke,
Xenophon Zabulis, Caner Sahin, Fabian Manhardt, Federico Tombari,
Tae-Kyun Kim, Jiri Matas, and Carsten Rother. Bop: Benchmark for
6d object pose estimation. In The European Conference on Computer
Vision (ECCYV), September 2018.

79



[50]

Tomas Hodani, Xenophon Zabulis, Manolis Lourakis, Stépan
Obdrzalek, and Jifi Matas. Detection and fine 3d pose estimation
of texture-less objects in rgh-d images. In 2015 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pages
4421-4428, Sept 2015.

Radu Horaud and Fadi Dornaika. Hand-eye calibration. The Interna-
tional Journal of Robotics Research, 14(3):195-210, 1995.

B. K. P. Horn. Extended gaussian images. Proceedings of the IEEFE,
72(12):1671-1686, Dec 1984.

Du Q. Huynh. Metrics for 3d rotations: Comparison and analysis.
Journal of Mathematical Imaging and Vision, 35(2):155-164, Oct 2009.

L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual atten-
tion for rapid scene analysis. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 20(11):1254-1259, Nov 1998.

Anil K Jain and Chitra Dorai. 3d object recognition: Representation
and matching. Statistics and Computing, 10(2):167-182, 2000.

L. Jing, J. Fengshui, and L. En. Rgb-d sensor-based auto path gen-
eration method for arc welding robot. In 2016 Chinese Control and
Decision Conference (CCDC), pages 4390-4395, May 2016.

W. Kehl, F. Manhardt, F. Tombari, S. Ilic, and N. Navab. Ssd-6d:
Making rgb-based 3d detection and 6d pose estimation great again.
In 2017 IEEFE International Conference on Computer Vision (ICCV),
pages 15301538, Oct 2017.

Wadim Kehl, Fausto Milletari, Federico Tombari, Slobodan Ilic, and
Nassir Navab. Deep learning of local rgb-d patches for 3dobject detec-
tion and 6d pose estimation. In Bastian Leibe, Jiri Matas, Nicu Sebe,
and Max Welling, editors, Computer Vision — ECCV 2016, pages 205—
220, Cham, 2016. Springer International Publishing.

Lilita Kiforenko, Bertram Drost, Federico Tombari, Norbert Kriiger,
and Anders Glent Buch. A performance evaluation of point pair fea-
tures. Computer Vision and Image Understanding, 166:66-80, 2018.

E. Kim and G. Medioni. 3d object recognition in range images using
visibility context. In 2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 3800-3807, Sept 2011.

80



[61]

[62]

[63]

[64]

[65]

[67]

[68]

Georg A Klein and Todd Meyrath. Industrial color physics, volume
154. Springer, 2010.

S. B. Kotsiantis. Supervised machine learning: A review of classifica-
tion techniques. In Proceedings of the 2007 Conference on Emerging Ar-
tificial Intelligence Applications in Computer Engineering: Real Word
Al Systems with Applications in eHealth, HCI, Information Retrieval
and Pervasive Technologies, pages 3-24, Amsterdam, The Netherlands,
The Netherlands, 2007. IOS Press.

N. Larkin, Z. Pan, S. Van Duin, and J. Norrish. 3d mapping using a tof
camera for self programming an industrial robot. In 2013 IEFE/ASME
International Conference on Advanced Intelligent Mechatronics, pages
494-499, July 2013.

Nathan Larkin, Aleksandar Milojevic, Zengxi Pan, Joseph Polden, and
John Norrish. Offline programming for short batch robotic welding. In
16th Joining of Materials (JOM) conference 2012, pages 1 — 6, 2011.

X. Li, L. Zhao, L. Wei, M. Yang, F. Wu, Y. Zhuang, H. Ling, and
J. Wang. Deepsaliency: Multi-task deep neural network model for

salient object detection. [FEE Transactions on Image Processing,
25(8):3919-3930, Aug 2016.

V. Lippiello, B. Siciliano, and L. Villani. Position-based visual servo-
ing in industrial multirobot cells using a hybrid camera configuration.
IEEFE Transactions on Robotics, 23(1):73-86, Feb 2007.

Kok-Lim Low. Linear least-squares optimization for point-to- plane icp
surface registration. Technical Report TR04-004, University of North
Carolina, 2004.

D. G. Lowe. Object recognition from local scale-invariant features. In
Proceedings of the Seventh IEEE International Conference on Com-
puter Vision, volume 2, pages 1150-1157 vol.2, Sept 1999.

David G. Lowe. Three-dimensional object recognition from single two-
dimensional images. Artificial Intelligence, 31(3):355 — 395, 1987.

Nemer Mahmoud and Konukseven E., Ilhan. Off-line nominal path
generation of 6-dof robotic manipulator for edge finishing and inspec-
tion processes. The International Journal of Advanced Manufacturing
Technology, pages 1-12, Dec 2016.

81



[71]

73]

[80]

Perla Maiolino, Richard Woolley, David Branson, Panorios Benardos,
Atanas Popov, and Svetan Ratchev. Flexible robot sealant dispens-
ing cell using rgh-d sensor and off-line programming. Robotics and
Computer-Integrated Manufacturing, 48:188 — 195, 2017.

Perla Maiolino, Richard A. J. Woolley, Atanas Popov, and Svetan
Ratchev. Structural quality inspection based on a rgb-d sensor: Sup-

porting manual-to-automated assembly operations. SAFE International
Journal of Materials and Manufacturing, 9(1):12-15, 2016.

Elias N Malamas, Euripides G.M Petrakis, Michalis Zervakis, Laurent
Petit, and Jean-Didier Legat. A survey on industrial vision systems,
applications and tools. Image and Vision Computing, 21(2):171 — 188,
2003.

R. McDonald and ed. Roderick. Colour Physics for Industry. Society
of Dyers and Colourists, 1997.

Ajmal S. Mian, Mohammed Bennamoun, and Robyn Owens. Three-
dimensional model-based object recognition and segmentation in clut-
tered scenes. IEEE Trans. Pattern Anal. Mach. Intell., 28(10):1584—
1601, October 2006.

Ajmal S Mian, Mohammed Bennamoun, and Robyn A Owens. Auto-
matic correspondence for 3d modeling: an extensive review. Interna-
tional Journal of Shape Modeling, 11(02):253-291, 2005.

S. Mitsi, K. D. Bouzakis, G. Mansour, D. Sagris, and G. Maliaris. Off-
line programming of an industrial robot for manufacturing. The In-
ternational Journal of Advanced Manufacturing Technology, 26(3):262—
267, Sept 2004.

Pedro Neto and Nuno Mendes. Direct off-line robot programming via
a common cad package. Robotics and Autonomous Systems, 61(8):896
- 910, 2013.

Pedro Neto, Nuno Mendes, Ricardo Araujo, J. Norberto Pires, and
A. Paulo Moreira. High-level robot programming based on cad: dealing
with unpredictable environments. Industrial Robot: the international
journal of robotics research and application, 39(3):294-303, 2012.

Ramakant Nevatia and Thomas O. Binford. Description and recogni-
tion of curved objects. Artificial Intelligence, 8(1):77 — 98, 1977.

82



[81]

[82]

[84]

[85]

[89]

[90]

Timothy S. Newman and Anil K. Jain. A survey of automated visual
inspection. Computer Vision and Image Understanding, 61(2):231 —
262, 1995.

Z. Pan, J. Polden, N. Larkin, S. V. Duin, and J. Norrish. Recent
progress on programming methods for industrial robots. In ISR 2010
(41st International Symposium on Robotics) and ROBOTIK 2010 (6th
German Conference on Robotics), pages 1-8, June 2010.

Chavdar Papazov and Darius Burschka. An efficient ransac for 3d
object recognition in noisy and occluded scenes. In Ron Kimmel, Rein-
hard Klette, and Akihiro Sugimoto, editors, Computer Vision — ACCV
2010, pages 135-148, Berlin, Heidelberg, 2011. Springer Berlin Heidel-
berg.

Konstantinos N Plataniotis and Anastasios N Venetsanopoulos. Color
image processing and applications. Springer Science & Business Media,
2013.

Joseph Polden, Zengxi Pan, Nathan Larkin, Stephen Van Duin, and
John Norrish. Offline programming for a complex welding system using
delmia automation. In Tzyh-Jong Tarn, Shan-Ben Chen, and Gu Fang,
editors, Robotic Welding, Intelligence and Automation, pages 341-349,
Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

Ekaterina Potapova, Michael Zillich, and Markus Vincze. Survey of
recent advances in 3d visual attention for robotics. The International
Journal of Robotics Research, 36(11):1159-1176, 2017.

L. Qu, S. He, J. Zhang, J. Tian, Y. Tang, and Q. Yang. Rgbd salient
object detection via deep fusion. IFEFE Transactions on Image Pro-
cessing, 26(5):2274-2285, May 2017.

Peter K. Radovan H., Daynier R. D. S. and Roman R. Offline program-
ming of an abb robot using imported cad models in the robotstudio
software environment. Applied Mechanics and Materials, 693,:62-67,

Dec 2014.

Lawrence G Roberts. Machine perception of three-dimensional solids.
PhD thesis, Massachusetts Institute of Technology, 1963.

Luis F. Rocha, Marcos Ferreira, V. Santos, and A. Paulo Moreira.
Object recognition and pose estimation for industrial applications: A

83



[91]

[92]

[93]

[94]

[95]

[97]

[98]

[99]

cascade system. Robotics and Computer-Integrated Manufacturing,
30(6):605 — 621, 2014.

S. Rusinkiewicz and M. Levoy. Efficient variants of the icp algorithm.
In Proceedings Third International Conference on 3-D Digital Imaging
and Modeling, pages 145-152, 2001.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. Imagenet large
scale visual recognition challenge. International Journal of Computer
Vision, 115(3):211-252, Dec 2015.

R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu. Fast 3d recognition
and pose using the viewpoint feature histogram. In 2010 IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems, pages 2155—
2162, Oct 2010.

R. B. Rusu and S. Cousins. 3d is here: Point cloud library (pcl).
In 2011 IEEE International Conference on Robotics and Automation,
pages 1-4, May 2011.

Giovanna Sansoni, Marco Trebeschi, and Franco Docchio. State-of-
the-art and applications of 3d imaging sensors in industry, cultural
heritage, medicine, and criminal investigation. Sensors, 9(1):568-601,
2009.

Hairol Nizam Mohd Shah, Marizan Sulaiman, Ahmad Zaki Shukor, and
Zalina Kamis. An experiment of detection and localization in tooth
saw shape for butt joint using kuka welding robot. The International
Journal of Advanced Manufacturing Technology, 97(5):3153-3162, Jul
2018.

Linda G. Shapiro and George C. Stockman. 3d models and matching.
In Computer Vision. Prentice Hall, Upper Saddle River, NJ, 2001.

Y. C. Shiu and S. Ahmad. Calibration of wrist-mounted robotic sensors
by solving homogeneous transform equations of the form ax=xb. IFEFE
Transactions on Robotics and Automation, 5(1):16-29, Feb 1989.

Carsten Steger. Occlusion, clutter, and illumination invariant object
recognition. International Archives of Photogrammetry and Remote
Sensing, 34(3/A):345-350, 2002.

84



[100]

[101]

[102]

[103]

[104]

[105]

[106]

107]

108

[109]

[110]

Yaoru Sun and Robert Fisher. Object-based visual attention for com-
puter vision. Artificial Intelligence, 146(1):77 — 123, 2003.

Alykhan Tejani, Danhang Tang, Rigas Kouskouridas, and Tae-Kyun
Kim. Latent-class hough forests for 3d object detection and pose es-
timation. In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne
Tuytelaars, editors, Computer Vision — ECCV 2014, pages 462-477,
Cham, 2014. Springer International Publishing.

Jan Theeuwes. Top—down and bottom—up control of visual selection.
Acta Psychologica, 135(2):77 — 99, 2010.

F. Tombari, S. Salti, and L. Di Stefano. A combined texture-shape
descriptor for enhanced 3d feature matching. In 2011 18th IEEE In-
ternational Conference on Image Processing, pages 809-812, Sept 2011.

R. Y. Tsai and R. K. Lenz. A new technique for fully autonomous
and efficient 3d robotics hand/eye calibration. IEEE Transactions on
Robotics and Automation, 5(3):345-358, Jun 1989.

Shimon Ullman et al. High-level vision: Object recognition and visual
cognition, volume 2. MIT press Cambridge, MA, 1996.

Markus Ulrich and Carsten Steger. Performance evaluation of 2d ob-
ject recognition techniques. International Archives of Photogrammetry,
Remote Sensing and Spatial Information Sciences, 34(3/A):368-374,
2002.

K. van de Sande, T. Gevers, and C. Snoek. Evaluating color descrip-
tors for object and scene recognition. IEEFE Transactions on Pattern
Analysis and Machine Intelligence, 32(9):1582-1596, Sept 2010.

Joel Vidal, Chyi-Yeu Lin, Xavier Llad6, and Robert Marti. A method
for 6d pose estimation of free-form rigid objects using point pair fea-
tures on range data. Sensors, 18(8), 2018.

Joel Vidal, Chyi-Yeu Lin, and Robert Marti. 6d pose estimation
using an improved method based on point pair features. CoRR,
abs/1802.08516, 2018.

Wei Wang, Lili Chen, Ziyuan Liu, Kolja Kiihnlenz, and Darius
Burschka. Textured /textureless object recognition and pose estimation
using rgb-d image. Journal of Real-Time Image Processing, 10(4):667—
682, Dec 2015.

85



[111] W. Wohlkinger and M. Vincze. Ensemble of shape functions for 3d ob-
ject classification. In 2011 IEEE International Conference on Robotics
and Biomimetics, pages 29872992, Dec 2011.

[112] Weidong Zhu, Weiwei Qu, Lianghong Cao, Di Yang, and Yinglin Ke.
An off-line programming system for robotic drilling in aerospace manu-
facturing. The International Journal of Advanced Manufacturing Tech-
nology, 68(9):2535-2545, Oct 2013.

86



