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ABSTRACT

In this paper a novel rank estimation technique for trajecto-

ries motion segmentation within the Local Subspace Affinity

(LSA) framework is presented. This technique, called En-

hanced Model Selection (EMS), is based on the relationship

between the estimated rank of the trajectory matrix and the

affinity matrix built by LSA. The results on synthetic and real

data show that without any a priori knowledge, EMS automat-

ically provides an accurate and robust rank estimation, im-

proving the accuracy of the final motion segmentation.

Index Terms— Machine Vision, Image Motion Analysis,

Motion Segmentation

1. INTRODUCTION

The problem of dividing an image into background and fore-

ground, also known as segmentation, is a crucial step for

many computer vision applications. When the subject of the

analysis is a video, rather than a still image, there is an addi-

tional information that can be exploited: the motion. In such a

case the segmentation is also known as motion segmentation.

A great number of researchers have focused on the mo-

tion segmentation problem, however, despite the vast litera-

ture, performances of most of the algorithms still fall far be-

hind human perception. A recent review on motion segmen-

tation techniques can be found in [1]. Among feature based

approaches, the Local Subspace Affinity (LSA) [2, 3] seems

the most promising framework being able to deal with dif-

ferent types of motion: independent, rigid, articulated and

non-rigid. Tron and Vidal concluded that LSA is the best

performing algorithm (among LSA, GPCA and a RANSAC

based approach) in case of non missing data [4].

One of the main problems of LSA is that it heavily relies

on the rank estimation of the trajectory matrix. In the origi-

nal proposal [2] this estimation was done by a model selec-

tion technique which requires the knowledge about the input

sequence noise level in order to tune a sensitive parameter.

Aiming to overcome this limitation we propose the Enhanced

Model Selection (EMS) technique, a novel rank estimation
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for trajectory matrix, which does not require any tuning pro-

cess nor a priori knowledge. EMS is based on the relationship

between the estimated rank of the trajectory matrix and the

affinity matrix built by LSA. EMS not only solves the previ-

ously explained limitation, but by improving the rank estima-

tion also provides a more accurate motion segmentation.

In the next section the overview on the new rank estima-

tion is given. The experiments obtained with synthetic and

real sequences are presented in section 3. Finally, in section 4

conclusions are drawn.

2. A NEW RANK ESTIMATION

2.1. Local Subspace Affinity (LSA)

LSA is a framework for trajectories motion segmentation un-

der affine projection proposed by Yan and Pollefeys [2, 3].

LSA can be summarized as follows:

1. build a trajectory matrix W2f×p, where f is the number

of frames of the input sequence and p is the number of

tracked feature points;

2. estimate the rank of W2f×p; this step is accomplished

by a Model Selection technique (MS) inspired by the

work of Kanatani [5]:

r = argminr

λ2
r+1∑r

i=1
λ2

i

+ kr (1)

being λn the nth singular value of W2f×p, and k a pa-

rameter that depends on the noise of the tracked point

positions: the higher the noise level is, the larger k

should be [2];

3. project every trajectory, which can be seen as a vector

in R
2f , onto an R

r unit sphere;

4. estimate by singular value decomposition the subspace

generated by each trajectory (and its nearest neigh-

bours) in the new space;

5. compute an affinity matrix A, where the affinity be-

tween each pair of trajectories is the inverse of the dis-

tance between the generated subspaces;

6. cluster A in order to have the final motion segmenta-

tion.
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Fig. 1. (a-c): Affinity matrices of an input sequence computed

after the MS rank estimation with different k values (black is

minimum affinity, white is maximum affinity); (d): Entropy

trend of the affinity matrices varying k value.

One of the weakest points of this framework, is the fact

that the rank estimated by equation 1 requires the parameter

k to be tuned depending on the input sequence noise level.

Tuning k is a very important step. In fact, using a fixed k,

or an improperly tuned k, may result in high misclassification

rates [4]. The parameter k is so sensitive that Tron and Vi-

dal, in their implementation of LSA, avoid the MS and fix the

new space size to 4n, where n is the number of motions. In

this way two new assumptions are made: rigid motion (the

theoretical maximum rank for a rigid motion is 4 [6]), and

knowledge of the number of motions n. The aim of EMS is

to provide automatically an accurate rank estimation of the

trajectory matrix looking for the best k value, without requir-

ing any knowledge or making any assumptions.

2.2. Estimated rank and affinity matrix relationship

EMS finds automatically a good k value exploiting the rela-

tionship between the rank of W2f×p estimated by MS (LSA

step 2) and the computed affinity matrix A (LSA step 5). Such

relationship can be seen in Fig. 1(a) to 1(c), where the affinity

matrices of an input sequence with two motions (maximum

rank 8) are shown. When the rank of W2f×p is estimated us-

ing an inappropriate k value, the affinity matrix does not pro-

vide any useful information. Specifically, if k is too small MS

tends to overestimate the rank and from the affinity matrix it is

possible to infer only that every trajectory is independent from

every other. This is the case of Fig. 1(a), where a k = 10−12

leads to a rank of 57. The opposite happens when k is too

high and MS tends to underestimate the rank of W2f×p, in

this case from the affinity matrix it is possible to infer only

that every trajectory is strongly related to any other. This is

the case of Fig. 1(c), where k = 10−4.75 leads to a rank of 3.

On the other hand, when k is well tuned the rank estimation

tends to be closer to the real rank of W2f×p, and the affinity

matrix can be used for a successful segmentation. This is the

case of Fig. 1(b), where k = 10−7 leads to a rank of 8.

Therefore, if a measure of the quality of the affinity matrix

is found, it would be possible to evaluate the accuracy of the

estimated rank. In such a case the rank estimation and the

affinity matrix computation could be repeated iteratively until

a “good” affinity matrix, hence an accurate rank estimation,

is obtained.

2.3. Entropy of the affinity matrix

In order to find a measure able to describe the quality of the

affinity matrix it is necessary to define what a “good” affinity

matrix is. Ideally, in presence of at least two motions, a per-

fect affinity matrix would have only two values: the highest

possible value, for every pair of trajectories that belong to the

same motion, and the lowest possible value, for every pair of

trajectories that belong to different motions. However, due

to noise and dependent motions the affinity matrix rarely has

only two values. Most frequently, it has two modes close, but

not necessarily equal, to the highest and to the lowest possi-

ble value. The two peaks of the modes correspond to those

pairs of sequences clearly related, or clearly unrelated. In ad-

dition there is a certain amount of in between values for those

pairs that are somehow related but not completely similar. In

contrast, bad affinity matrices are those that do not differen-

tiate enough between related and unrelated trajectories which

means that the histogram of those matrices is unimodal with

a mode corresponding to very high or very low values.

The trends of different statistical parameters, extracted

from the affinity matrices obtained going from overestimation

to underestimation of the rank, have been analysed. From this

study it emerged that the entropy defined as:

E(A) = −
∑

(I log2(I)) (2)

where I contains the histogram counts of A, can be used as a

measure of the quality of the affinity matrix. In fact, when the

rank of W2f×p is overestimated or underestimated, the corre-

sponding affinity matrices are homogeneous respectively with

low values and high values, whereas if the rank estimation is

accurate the affinity matrix contains a wider range of values.

Fig. 1(d) shows the trend of the entropy computed on the

affinity matrices of the same sequence showed in Fig. 1(a)

to 1(c). Entropy starts with low values when k = 10−12,

as in Fig. 1(a). As k increases, and A tends to the one of

Fig. 1(b), the entropy also increases and reaches its maxi-

mum when k = 10−7. After that point the entropy starts

decreasing and it drops to zero when A becomes completely

homogeneous, as in Fig. 1(c).

Hence, a “good” affinity matrix could be built using the

rank estimation of W2f×p that led to the maximum entropy.

However, building all the affinity matrices going from small

to high k values is computationally expensive. Nonetheless,

the entropy trend has a property that can be exploited in order

to speed up the maximum entropy localization: entropy trend

has only one global maximum and no local maxima nor min-

ima. This happens because going from overestimation to un-

derestimation of the rank of W2f×p, the space size onto which

the trajectories are projected decreases. Every time the space

size becomes smaller the distance between every trajectory

subspace tends to decrease. However, the distance between

trajectory subspaces that belong to the same motion decreases

faster than the distance between trajectory subspaces that be-
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(a) Synthetic sequence (b) Real sequence

Fig. 2. Two frames of input sequences used to test EMS.

long to different motions. If the dimension keeps decreasing,

eventually any subspace will be close to any other, to the point

that all the trajectories will lie on exactly the same subspace.

Summarizing, going from small to high k values the distance

between subspaces tends to decrease, therefore the affinity

tends to increase until it reaches the maximum value. This

is the reason why the entropy trend of the affinity matrix is a

convex function without local minima or maxima. Hence, it

is possible to exploit the gradient of the entropy trend in order

to have a good approximation of where the maximum entropy

is, drastically reducing the amount of calculations.

3. RESULTS

In order to evaluate EMS we compare the results obtained us-

ing LSA with MS1 and our implementation of LSA with EMS

(available at http://eia.udg.edu/∼zappella). Both

algorithms provide the final segmentation applying Spectral

Clustering [7] to the affinity matrix as suggested in [2]. We

perform experiments on synthetic sequences, as in Fig. 2(a),

and real sequences, as in Fig. 2(b).

3.1. Synthetic experiments

The synthetic database is composed of video sequences of 30

frames with rotating and translating cubes, where each one

has 26 tracked points evenly spaced on its surface. There are

5 sequences with random motion with 2, 3, 4, and 5 motions,

for a total of 20 sequences. This set is then perturbed with

random gaussian noise with a standard deviation of 0.5, 1,

1.5, 2, 2.5 and 3 pixels, composing a synthetic database with

a total of 140 sequences. The misclassification rate of LSA

with MS presented in this section is obtained after a tuning

step choosing among different k values the one that led to the

lowest average misclassification rate (k = 10−7.5). EMS did

not require any tuning process.

Fig. 3(a) shows the boxplot of the misclassification rate

averaged over all the synthetic sequences. The average mis-

classification is much lower for the EMS version of LSA:

1.1% against 5.6%. It should be noticed how broader the MS

first and the second quartile ranges are compared with EMS

1Available at http://www.vision.jhu.edu

ones. Moreover, the number of outliers (in terms of misclas-

sification rate of the sequences) is considerably smaller with

EMS. Furthermore, the highest EMS misclassification is only

10% while for MS the highest misclassification is 60%.

The misclassification rates depending on the noise level

and on the number of motions are shown in Fig. 3(b) to 3(d),

while Fig. 3(e) shows the misclassification averaged among

all number of motions. The trend with only 2 motions is not

shown as both algorithms have a low misclassification rate

(less than 1%) independently from the noise level. With 3

and 4 motions MS misclassification remains low as long as

the noise level has a standard deviation lower than 1.5 pixels.

After this noise level the misclassification increases dramati-

cally. With 5 motions the misclassification rate starts becom-

ing considerably high even with a noise standard deviation

of only 0.5 pixels. From these results the sensitivity of MS

about the relationship between the k value and the noise level

is confirmed, but another problem arises: k seems to be influ-

enced not only by the noise level but also by the number of

motions. On the other hand, LSA with EMS misclassification

rate remain more stable either when the noise level increases

and when the number of motions increases. The average mis-

classification never rises above 4% (see Fig. 3(e)).

3.2. Real experiments

In order to test EMS also with real sequences we use the

Hopkins155 database1 [4], which is a reference database for

motion segmentation, composed of 155 real video sequences:

120 with 2 motions and 35 with 3 motions. Again, for LSA

with MS we computed the misclassification rate using differ-

ent k values and we are presenting in this section the lowest

average misclassification (obtained with k = 10−7).

Fig. 4(a) shows the boxplot of the misclassification rate.

As in the synthetic results, EMS always has a lower misclassi-

fication rate and more compact quartile ranges. These results

prove that EMS always provides a better rank estimation of

W2f×p, and it does so in an automatic fashion.

Inside the Hopkins155 database there are different types

of sequences: checkboards, traffic and articulated/non-rigid.

The checkboard is the main group, 104 videos, hence it is

likely that the type and the amount of noise does not change

much as most of the sequences are taken in the same environ-

ment. For the purpose of testing the EMS with bigger noise

changes, we created another six databases derived from the

Hopkins155 adding random gaussian noise, with standard de-

viation of 0.5, 1, 1.5, 2, 2.5 and 3 pixels, to the tracked point

positions. The original database plus the six derived from it

compose a bigger database with 1085 video sequences.

We compared again LSA with MS using k = 10−7 and

LSA with EMS. Fig. 4(b) shows the boxplot of the misclassi-

fication rate on the modified Hopkins155 database. As before,

EMS has lower average misclassification and more compact

quartile ranges. As expected, the increment in the misclassi-

fication rate (from Fig. 4(a) to 4(b)) is bigger with MS than
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(c) 4 Motions
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(d) 5 Motions
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Fig. 3. Synthetic Sequences. (a): Misclassification boxplots; (b-d): mean (�, ×) and variance (�,�) trends of the misclassifi-

cation rate with different number of motions; (e): mean (�,×) and variance (�,�) trends of the misclassification rate averaged

overall the number of motions.
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(b) Hopkins155 with noise

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

Standard Deviation Noise Level

%
 M

is
cl

as
si

fic
at

io
n 

2 
M

ot
io

ns

LSA with MS
LSA with EMS

(c) 2 Motions
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(d) 3 Motions
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Fig. 4. Real Sequences. (a-b): Misclassification boxplots; (c-d): mean (�, ×) and variance (�, �) trends of the misclassifica-

tion rate with different number of motions; (e): mean (�, ×) and variance (�, �) trends of the misclassification rate averaged

overall the number of motions.

with EMS, MS increment is more than double than the EMS

one: 7.3% against 3.1%.

Fig. 4(c) to 4(e) show the average misclassification and

variance for each algorithm changing the noise level and the

number of motions. Both algorithms have more problem to

deal with 3 motions, but also in this case EMS has a better

behaviour. From these plots it is also possible to evaluate the

divergence between MS and EMS misclassification. Misclas-

sification increases for both algorithms when the noise level

rises but EMS is able to contain the misclassification better

than MS. Considering two and three motions averaged to-

gether (see Fig. 4(e)) the difference of the misclassification

between MS and EMS goes from 3.32% without any added

noise to 12.22% with 3 pixels of standard deviation noise.

4. CONCLUSION

In this paper a novel EMS rank estimation for trajectory ma-

trices has been presented. EMS exploits the relationship be-

tween the trajectory matrix rank and the affinity matrix built

by LSA. The results on synthetic and real sequences proved

that EMS provides a more accurate rank estimation leading to

a more successful motion segmentation. Moreover, standard

MS requires some tuning process regarding the noise level

of the input sequence and the number of motions in order

to provide low misclassification rate, while EMS is able to

adapt automatically without any a priori knowledge. As far

as we know, this is the first automatic LSA. In fact, until now

the rank of W2f×p was either estimated assuming the knowl-

edge of the amount of noise [2, 3], or assuming the knowledge

about the number and the type of motions [4].
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