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Abstract. In this paper we evaluate an automatic segmentation algo-
rithm able to identify the set of rigidly moving points within a deformable
object given the 2D measurements acquired by a perspective camera. The
method is based on a RANSAC algorithm with guided sampling and an
estimation of the fundamental matrices from pairwise frames in the se-
quence. Once the segmentation of rigid and non-rigid points is available,
the set of rigid points could be used to estimate the internal camera
calibration parameters, the overall rigid motion and the non-rigid 3D
structure.

1 Introduction

In this paper we evaluate a method that performs the automatic segmentation
of a set of rigidly moving points within a deformable object given a set of 2D
image measurements. Several works have previously proposed the use of the
dimensionality of the subspace in which the image trajectories lie to perform
motion segmentation [1,2,3,4]. However, all these methods focus either on the
segmentation of independently moving objects or on the segmentation of ob-
jects of different nature (rigid, articulated or non-rigid), but none of them can
deal efficiently with the segmentation of rigid and non-rigid points on a single
deformable object. Moreover, most of these methods assume an affine camera
model but in this paper we are interested in the full perspective camera case.
To our knowledge, the work of Del Bue et al. [5] is the first attempt to obtain a
reliable segmentation of rigid points from non-rigid bodies, however, the method
is restricted to affine camera models.

Our segmentation approach in the perspective case is based on a RANSAC [6]
algorithm with guided sampling, similarly to the one proposed by Tordoff and
Murray [7]. The RANSAC algorithm is used to estimate the fundamental ma-
trices from pairwise frames in the sequence and to segment the scene into rigid
and non-rigid points. We perform experiments of the segmentation algorithm
on synthetic and real data which show the validity of our proposed method.
The result of the segmentation algorithm could then be used to recover the 3D
non-rigid structure and motion using the method described in [8,9].

The paper is organised as follows. Section 2 introduces the general idea of the
segmentation algorithm, while sections 3−4 describe in detail the different steps
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of the approach. In section 5 we show segmentation results on different synthetic
and real data sets.

2 Segmentation of Rigid and Non-rigid Motion Under
Perspective Viewing

The approach is based on the fact that rigid points satisfy the epipolar geometry
while the non-rigid points will give a high residual in the estimation of the
fundamental matrix between pairs of views. We use a RANSAC algorithm [6]
to estimate the fundamental matrices from pairwise frames in the sequence and
to segment the scene into rigid and non-rigid points. Therefore, in this case we
consider the dominant motion to be the rigid one and the non-rigid points to be
the outliers.

However, a well known drawback of random sampling and consensus tech-
niques is the computational cost required to obtain a valid set of points when
the percentage of outliers is high, due to the large number of samples needed to
be drawn from the data. Unfortunately, this is the most likely scenario in non-
rigid structure from motion where we normally deal with a small proportion of
completely rigid points. Here we exploit a measure of the degree of non-rigidity
of a point to infer a prior distribution of the probability of a trajectory be-
ing rigid or non-rigid given that measure. These distributions are then used as
priors to perform guided sampling over the set of trajectories in a similar ap-
proach to the one proposed by Tordoff and Murray [7] for the stereo matching
problem.

2.1 Degree of Non-rigidity

In order to increase the likelihood of selecting rigidly moving points in the sam-
pling stage, we associate a measure of non-rigidity to each trajectory. Recently,
Kim and Hong [10] introduced the notion of Degree of Non-rigidity (DoN) of
a point viewed by an orthographic camera as an effective measure of the devi-
ation of the point from the average shape. If the average 3D shape of a time
varying shape Xi = [Xi1 . . .XiP ] (in non-homogeneous coordinates) is given by
X̌ = [X̌1 . . . X̌P ] the Degree of Non-rigidity for point j is defined as:

DoNj =
F∑

i=1

(Xij − X̌j)(Xij − X̌j)T (1)

The 2D projection Cj of the DoN will be thus given by:

Cj =
F∑

i=1

Ri(Xij − X̌j)(Xij − X̌j)T RT
i =

F∑

i=1

(wij − w̌ij)(wij − w̌ij)T (2)

where Ri are the 2 × 3 orthographic camera for F frames, wij are the non-
homogeneous image coordinates of point j in frame i and w̌ij are the coordinates
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of its projected mean 3D value over the F frames in the sequence. While the
DoN cannot be computed without an estimation of the mean 3D shape (and
this implies finding a 3D deformable reconstruction), the value of its projection
can be estimated directly from image measurements.

An approximate estimate of the average projected shape w̌ij can be given
simply by the rank-3 approximation of the measurement matrix W (the matrix
that contains the 2D coordinates wij of all P points viewed in all F frames)
computed using singular value decomposition and given by SV D3(W) = M̌Š. The
projected deviation from the mean for all the points would then be defined by
{wij −w̌ij} = W− M̌Š. Kim and Hong computed a more sophisticated estimate of
the average shape, but for simplicity we have used the above description which
has shown to give a reasonable measure of the degree of deformability.

Notice that the previous definitions all assume affine viewing conditions. How-
ever, our trajectories reside in a projective space so a redefinition of the mea-
sure of non-rigidity is required. First, the original measurement matrix must
be re-scaled by the estimated projective weights λij . We calculate the projective
weights λij using subspace constraints [11] and express the rescaled measurement
matrix (in homogeneous coordinates) as W̄ = {λij [wT

ij 1]T }. Then, we estimate
the mean shape as the rank-4 approximation of the rescaled measurement ma-
trix computed using singular value decomposition and given by SV D4(W̄) = M̌Š.
The projected deviation from the mean would then be defined similarly as be-
fore but computing the mean projected shape w̌j using the normalized non-
homogenous coordinates. Therefefore, the projection of the DoN can finally be
computed as:

Cj =
F∑

i=1

(wij − w̌ij) (wij − w̌ij)
T (3)

in the form of a 2 × 2 covariance matrix. Instead of using the full information of
Cj , we approximate the score s as the sum of the diagonal values of Cj .

3 Computation of the Prior

Tordoff and Murray [7] showed that guided sampling based on knowledge ex-
tracted from the images can greatly improve the performance of a random sam-
pling method, especially in the presence of noise or high number of outliers. In
these cases standard RANSAC becomes computationally prohibitive given the
large number of random samples that must be drawn from the data. Here we
use the 2D projection of the DoN defined in the previous section to provide
the score s for each point trajectory which in turn will be used to build a prior
distribution of the conditional probability of each point in the object being rigid
or non-rigid given this score.

We have inferred the conditional probability density functions for the score
s given that a point is rigid p(s|r) (see figure 1(a)) or non-rigid p(s|r̄) (see
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(a) (b)

Fig. 1. Conditional densities for the score given: (a) that a point is rigid p(s|r) or (b)
non-rigid p(s|r̄) approximated from the normalised frequency histograms for different
synthetic and real sequences with different degrees of perspective distortion, deforma-
tion and ratio of rigid/non-rigid points

figure 1(b)) by computing the normalised frequency histograms over many ex-
perimental trials with synthetic and real sequences with different perspective
distortions, degrees of deformation and ratios of rigid/non-rigid points. We have
then approximated the histograms by fitting appropriate analytical functions (a
Gamma distribution for p(s|r) and a Lognormal for p(s|r̄)).

To derive the prior conditional density function of a point being rigid given
the non-rigidity score, p(r|s), we use Bayes theorem:

p(r|s) =
p(s|r)p(r)

p(s)
∝ p(s|r)

p(s|r) + p(s|r̄) (4)

Figure 2 shows an example of a prior obtained from our experiments. Note that,
although the computation of the score is specific to each method, the derivation
of the prior given the distribution of the score is general.

Fig. 2. Estimated prior given by the estimated densities p(s|r) and p(s|r̄)
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4 Guided RANSAC

We use guided RANSAC to estimate the fundamental matrices between pairs
of consecutive views for all the F frames composing the sequence. This process
will be used to provide a segmentation of the image trajectories into rigid and
non-rigid ones since the non-rigid trajectories will not satisfy the epipolar geom-
etry and will therefore give a high residual in the computation of the pairwise
fundamental matrices. In order to speed up the process, we use the prior derived
in the previous section to draw the point samples: points with the highest con-
ditional probability of being rigid will be chosen more frequently. The RANSAC
with priors procedure is outlined as follows:

Algorithm 1. RANSAC with priors
1. Compute the score s for each trajectory in W̄.
2. Sample b trajectories given the prior p(r) and the score s.
3. For each sample, estimate (F − 1) fundamental matrices from each

pair of consecutive frames.
4. Calculate the distance of the points from the F − 1 instantiated

models and find the trajectories that are within a threshold t.
5. Repeat N times and determine the largest consensus given a set of

trajectories.

The method employed to estimate the fundamental matrix is the standard
8-point algorithm [12]. The distance threshold t which decides whether a point
is an inlier or an outlier (rigid or non-rigid in this case) was set empirically to
be t = 4.12. It was fixed by taking into account the sum of the residuals given
by the estimation of F − 1 fundamental matrices using normalised coordinates.
Notice that we do not consider outliers in the point matching from frame to
frame. We show results of the guided sampling RANSAC algorithm applied to
the segmentation of rigid and non-rigid points in the experimental section.

Once the scene has been segmented into the rigid and non-rigid point sets we
may compute metric non-rigid shape in two further steps as described in [8,9].
First the rigid points are used to estimate the intrinsic parameters of the camera
– which provide the necessary information to upgrade the structure to metric
– and the overall rotations and translations. Secondly, the estimation of metric
non-rigid shape is formulated as a global non-linear minimization with shape
priors over the rigid trajectories.

5 Experimental Results

This experimental section validates the rigid/non-rigid segmentation with syn-
thetic and real experiments. The synthetic tests are designed in such a way as to
verify the performance of the method in case of different ratios of rigid/non-rigid
points and with two different setups of perspective distortions.
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5.1 Synthetic Data

The 3D data consists of a set of random points sampled inside a cube of size
100× 100× 100 units. Several sequences were generated using different ratios of
rigid/non-rigid points. In particular, we used a fixed set of 10 rigid points while
using 10 and 50 non-rigid points. The deformations for the non-rigid points were
generated using random basis shapes as well as random deformation weights.
The first basis shape had the largest weight equal to 1. We also created different
sequences varying the number of basis shapes (D = 3 and D = 5) for both
ratios of rigid/non-rigid points. Finally, in order to evaluate different levels of
perspective distortion we used 2 different camera setups in which we varied
the distance of the object to the camera and the focal length (Setup 1: z=250,
f=900; Setup 2: z=200, f=600). The 3D data was then projected onto 50 images
applying random rotations and translations over all the axes. Gaussian noise of
increasing levels of variance was added to the image coordinates.

Table 1. Mean error of number of non-rigid points being classified as rigid over 100
trials. Results for different levels of Gaussian noise with variance σ = 0.5, 1, 1.5, 2
pixels and different experimental setups.

NoiseExperiments
0 0.5 1 1.5 2

Exp1: D = 5, 10/10, setup 1 0.28 0.48 0.55 0.72 0.77
Exp2: D = 5, 10/50, setup 1 0.31 0.38 0.46 0.55 0.72
Exp3: D = 3, 10/10, setup 1 0.95 1.36 1.53 1.60 1.54
Exp4: D = 3, 10/50, setup 1 2.19 2.38 2.33 2.78 2.51
Exp5: D = 5, 10/10, setup 2 0.24 0.27 0.32 0.48 0.62
Exp6: D = 5, 10/50, setup 2 0.3 0.34 0.39 0.51 0.58
Exp7: D = 3, 10/10, setup 2 0.65 0.94 1.27 1.42 1.45
Exp8: D = 3, 10/50, setup 2 2.09 2.37 2.28 2.31 2.27

The RANSAC procedure was tested over 100 trials for each setup and for each
level of noise. The number of samples randomly chosen over the prior distribu-
tion was fixed to 2500. At each new trial the motion components (rotation and
translation) of the objects are randomly generated obtaining a 50 frames long
sequence. The results in table 1 show the mean error (over the 100 trials) of the
number of non-rigid points being classified as rigid for the different setups. Bet-
ter performances are obtained for more complex deformations (i.e., more basis
shapes, D = 5) and for stronger perspective effects (Setup 2) since the effects of
perspective distortions and deformations are less ambiguous in such cases (Ex-
periments 5 and 6). Experiments 4 and 8 obtain the worse results achieving a
mean error of more than 2 points given the smaller deformations occuring in
these data and the higher number of non-rigid points (50).
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(a) (b)

Fig. 3. (a) The image frame show the position of the markers used to capture the face
deformations. (b) The image shows an example of the setup used for the box and pillow
experiment. The segmented rigid points are highlighted with a red star.

5.2 Real Experiments

We tested our segmentation algorithm over two sequences with real deforming
objects. The 3D structure was obtained using a VICON motion capture system
and was then projected synthetically onto the image plane using a perspective
camera model. Gaussian noise of 0.5 pixels was finally added to the image coordi-
nates. The first experiment captured a human face undergoing rigid motion while
performing different facial expressions. The subject was wearing 37 markers on
the face. Figure 3 (a) shows two frames with the positions of the markers and
the selected rigid points. The segmented points mostly belong to the temple and
nose areas which udergo a predominantly rigid motion in the sequence. Applying
the non-rigid structure from motion algorithm proposed in [9] we obtained a 2D
reprojection error (root mean squared) of 0.62 pixels, a 3D error relative to the
scene size of 1.81 units (the size of the face model was 168 × 193 × 101 units)
and a rotation error of 0.27 degrees.

The second scene consisted of a set of 12 rigid points (9 on two boxes and 3
over a chair) and a set of 20 deformable points situated on a pillow which was
deforming during the sequence (see Figure 3 (b)). The segmentation algorithm
provided 13 rigid points, including one non-rigid trajectory corresponding to one
of the pillow points. However, the inclusion of this non-rigid point did not affect
the 3D reconstruction results. We obtained a 2D reprojection error of 0.9 pixels,
a 3D relative error of 1.49 units (the size of the scene was 61 × 82 × 53) and a
rotation error of 2.82 degrees.

6 Conclusions

We have presented an approach to segment rigid trajectories embedded in a non-
rigidly moving shape. The extracted rigid trajectories may be used to obtain
prior-based 3D reconstructions as in [9] or to aid non-rigid shape registration
tasks. The segmentation stage obtains reasonable results for the configuration of
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basis, cameras and points tested. However we noticed a higher misclassification
ratio with weak perspective effects and higher proportion of non-rigid points.
Also, points that are rigid only for a part of the sequence may appear undetected
since they only conform with the epipolar geometry for a subset of frames.
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