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Abstract— SLAM algorithms do not perform consistent maps hoise. In addition, one of the main drawbacks of the EKF
for large areas mainly due to the uncertainties that become jmplementation is the fact that for long duration missions,

prohibitive when the scenario becomes larger and to the in- e nymper of landmarks increases and, eventually, compute
crease of computational cost. The use of local maps has been ill not suf ce t date th . It Thi
demonstrated to be well suited for mapping large environments, resources will not surce to update the map In real-ime.sihi

reducing computational cost and improving map consistency. Scaling problem arises because each landmark is corretated
This paper proposes a technique based on using independentall other landmarks, giving a memory complexity Gfn?)
local maps. Every time a loop is detected, these local maps areand a time complexity ofO(n?) per step, wheren is the
corrected using the information from local maps that overlap 45| number of features stored in the map. The correlation
with them. Meanwhile a global stochastic map is kept through - . . .
loop detection and minimization as it is done in the classical aF’pearS since the observation of a new Ianfjmark is obtained
Hierarchical SLAM approach. This global level contains the With @ sensor mounted on the moving vehicle and thus the
relative transformations between local maps, which are updated landmark location is correlated with the vehicle locatiord a
once a new loop is detected. In addition, the information within the other landmarks of the map. This correlation is a keytpoin

the local maps is also corrected, maintaining always each local fo; the |ong-term convergence of the algorithm, and needs to
map separately. This approach requires robust data association be maintained during all the mission !

algorithms, for instance, an adapted version of the JCBB algo- ‘ R
rithm. Experimental results show that our approach is able to ~ Using submaps both limitations can be addressed at the

obtain large maps areas with high accuracy. same time (i.e. linearization errors and rise on compuiatio
cost). Therefore, using small maps to later on build a bigger
one improves the consistency of the EKF-SLAM [6]. Limiting
the size of a submap, by bounding the total number of
I. INTRODUCTION landmarks or by xing the maximum distance traveled by a
Simultaneous Localization and Mapping (SLAM) alsaehicle, maintains the uncertainties of the submap andirthe |
known as Concurrent Mapping and Localization (CML) igarization errors small. Furthermore, having small uradety
one of the fundamental challenges of robotics. The goal ofatrices improve the consistency of the data associatidh-me
SLAM is to build a map of an unknown environment whileods. For instance, in the Joint Compatibility Branch andiidbu
simultaneously determining the location of the robot withi(JCBB) algorithm, the smaller the covariance matrix values
this map [1]. In this scenario, the vehicle has a known kinere, the better the performance is [7]. Another advantage of
matic model and it is moving through an unknown environworking with small maps is that the amount of data involved
ment, which is populated with arti cial or natural landmark in the EKF-SLAM is kept small, thus computational cost is
measured by the on-board sensors of the vehicle. The SLARduced.
problem involves nding appropriate representation fottho The main contribution of this paper is a novel technique
the observation and the motion models, which is generallgat uses submaps as in a Hierarchical SLAM [8], but keeps
performed by computing its prior and posterior distribotio local maps independently. The general idea of our approach
using probabilistic algorithms, for instance Kalman Hgte is as follows. The vehicle navigates and builds local maps.
(KF), Particle Filters (PF) [2] and Expectation Maximizati Meanwhile, a global stochastic map containing the relative
(EM) [3]. The main reason for the increasing popularity dfransformations between submaps is built. Once a loop is
these probabilistic techniques is the fact that robot mappiclosed, these relative transformations are corrected mgus
is characterized by uncertainty and sensor noise. Therefdoop closure constraints, as it is done in the Hierarchical
probabilistic algorithms tackle the problem by modeling exSLAM approach. At this point, those maps that compose the
plicitly different sources of noise and their effects on thop are also updated, but kept separately. Therefore, map
measurements [4]. joining is not performed. The vehicle continues its navigat
The most known SLAM approach is the Extended Kalmaluilding local maps until a new loop is closed. To nd a
Filter SLAM (EKF-SLAM) [5]. It is based on representing theloop closing situation, the information from the corrected
vehicle's pose and the location of a set of environment featu local maps is used. In addition, the data association psoces
in a joint state vector estimated and updated by the Extendedsimpli ed since the feature's information was previoysl
Kalman Filter. The EKF provides a suboptimal solution dueorrected and the uncertainty was reduced.
to the approximations introduced when linearizing the niyde This new technique has been implemented, tested with
which may result in inconsistencies [6], and also due to tlsmulated scenarios, and compared with other EKF based
assumption that the uncertainties associated to the matidn techniques. The experiments show a reduction of the eftécts
measurement processes are only additional white Gausdiamlinearization error and also a more precise recongbruof

Index Terms— SLAM, submap, large scale, data association



the map since the drift suffered in shorter distances islemal when joining maps. This way only the joint map information
and the data association can be more robustly solved. is kept, instead of that from the individual maps. The method

This paper is organized as follows. Related work is brie yve propose in this paper takes advantage of the adjacency
described in Section Il, especially those approaches thalt dgraph representation from the CTS and Atlas, but it uses the
with large scale scenarios. Section Il concerns the pmgodoop constraint optimization as in the Hierarchical SLAM.
solution, describing the steps involved in the processti@ec In addition, the independent local maps are kept at a small
IV summarizes the experimental results obtained. The paséze, while being corrected with the local information from
ends with the conclusions and future work in Section V.  overlapping submaps.

Il. RELATED WORK 1. PROPOSED SOLUTION

The approach presented in this paper is similar to that of the
&rarchical SLAM. Once a loop is detected, the information
yared by more than one submap is used to correct each

In the last decades, several works have tackled the issv_ﬁ
associated with SLAM in large areas, such as the comp

tfa\tiongl gomplexity and th? inconsistencies' caused 'by t fdividual local map separately. The assumption that ehoug
linearization errors. Regarding the computational coxipte rlapping exists between those maps that close the loop is

techniques delay the global update stage aft ol
some techniques delay the giobal updale stage after Sevigaye, Taking advantage of the overlapping, features tleat ar

observations, reducing signi cantly.the cost. .For ins@rine ommon in several submaps are updated. These common land-
Compressed Extended Kalman Filter algorithm (CEKF) [q arks from other submaps are rst referred with respect ¢o th

or the Postponement approach [10], in which the global m o
update cost i©(n?). Mt position of the local map to be updated. Afterwardsy the

on th her hand. th bl ¢ . are considered as new observations, while the existinganees
h the other hand, the problem of map consistency prgseq ¢, perform a EKF prediction. Using the predicted festur

duced by Imeanzauon. errors motivated a'QO”thm? sucthes and the observed ones, the innovation vector is estimatéd an
Unscented Kalman Filter (UKF) [11], which achieves betteg EKF update is computed. Therefore, the location of the

consistency addressing the approximation issues of the E ndmarks within the local map is corrected. This correttio

but mcLeases thfe comput:tlor;]al ct?mplebxny. q h fis conducted for each of the maps with common features. Each
fAnot er set'lo approa;c.es as eeln ?S(h?. on the gseho TN map is kept as an independent local map, allowing to use
In ormatlonl Fi t_er:. An efcient ex_ample of this group Is thejis 5ca) information in further loops. With this approadhe
Treemap algorithm [12]. It require§(log n) time per Step itormation from various submaps is used when correcting
to recover a part of the state af(n) to recover the whole local maps, and the detection of loops takes prot of the

map. However, these techniques based on information ltefgyper precision of the corrected local maps. A diagram of
suffer from the dif culty to perform data association singe - complete process is shown in Fig. 1

covaraince matrix is involved.
More recent techniques based on submapping face the o

problems of consistency and computational complexity, bl Local Map Building

they require complete independency between maps, or whaf\ local map is built running a basic EKF SLAM algo-

is the same, no information is shared between neighborifihm [15]. Every local map is initialized with its state wec

maps. For instance, the Decoupled Stochastic Map [13] works at zero, and its associated uncertai®y = 0. The

with submaps but it has difculties due to the fact thatocal map building process is stopped when the number of

its absolute submaps are not statistically independentitandandmarks in the current local map exceeds a threshold, when

requires approximations to solve these dependenciesdintr the distance visited within this local map is long enough

ing inconsitency in the map. The Constrained Local Submagcording to a threshold, or when the uncertainties become

Filter (CLSF) [14] or Local Map Joining (LMJ) [15] producehigher than a certain acceptance limit. The output of this

ef cient global maps by consistently combining completelylgorithm is the local maM¢' (1) with respect to its base

independent local maps, with a total costin?). The Divide referenceB;, which contains the position of the vehicle and

and Conquer SLAM (DC) [18] is capable to recover the glob#ne location of then featuresF; observed within this map,

map in approximatelyd(n) time. The main limitation of the and its associated unceratir@f" .

DC approach is that the time increases considerably with the

overlapping information between local maps. More ef cient Bi — (yBi-PBiY\ .. — fR. - [ oveeee [,

techniques, such as the Constant Time SLAM (CTS) [16], Mg = (xeliPe) R = TBiFiaiFiziiFin g (1)

the Atlas approach [17], and the Hierarchical SLAM [8] ) o

store the link between local maps by means of an adjacerﬁyGIObaI Stochastic Map Building

graph. The CTS and the Atlas do not impose loop consistencyThe relative transformatiorn;; = xg; = (XY )t

in the graph, obtaining a suboptimal global map. Insteabgtween two consecutive submalls and M; is stored in

the most precise path along the graph is computed to ral relative stochastic map, = (bu;Fbu) (similar to the

the location of local maps in a global reference frame. Thdierarchical SLAM approach [8]), where thg, is a vector

Hierarchical SLAM approach can perform consistent globabntaining all relative transformations between local myand

maps by imposing loop constraints. However, the commd®, the uncertainties associated to these transformatiors. Th

information shared by different maps is discarded, or osldu subindexu stands for unconstrained, since at this point no
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PROCESSES INVOLVED: -M=(x,P)
- Change map base reference -M,= (x/ , P/)
- EKF step for submaps with ~ OUTPUT::

common features

-updated M. and M
i J

Block diagram detailing the Hierarchical SLAM preseadapted to
the approach presented in this paper.

C. Loop Detection

loop closing constraints have been applied. This will beedo
in further steps when imposing loop constrairg@e¢tion 111.D.

S |
+ Landmarks in M;
® Landmarks in M;
X Landmarks in My

Fig. 2. Schematic representation of a loop closing situatwnere three
mapsMi, Mj andMy are overlapping and closing two different loops. The
grey ellipse contains three landmarks that may cause confusio

of the data association algorithm JCBB, which determines if
any landmark have been revisited. In addition, the result of
the JCBB is veri ed by checking that only one feature from a
local mapM; is associated to a single feature from a local map
M; . This extra check is required, since features closed by the
boundaries of the local maps may cause confusion, as ddpicte
in Fig. 2. If a feature is associated to more than one landmark
from the other map, its neighboring information is then take
into account (as well as its joint mahalanobis distance)s Th
way, the right associate is selected and the others aredéxta
After this check, the loop hypothesis is accepted and thezef
the loop constraints are imposedection IIl.D. It may
happen, and it is desirable, that more than one submap pverla
with the last submap. In this way, more than one hypothesis of
loop is accepted. Assuming that we can have high overlapping
between consecutive submaps, the detection of loops is not
run immediately after closing a loop. The system waits until
two new local maps have been build, in order to avoid loop
detection at the end of every submap.

D. Computing last links to close loops

n

The global stochastic map, does not contain the last
. Bj . .
link that closes the loopg!. Hence, this last link has to
be computed by rst solving robustly the data association

When the vehicle is moving through a scenario, a sequermetween the local mall; 1 and the last ma; . A possible
of local maps is built. Every time a local may; is completed, scenario where this step is required is shown in Fig. 2. The
the possibility of closing a loop with some other previoudata from one map, for instandd; is moved and referred
local mapsM;, wherei = 1::j, is checked. The data fromwith respect to the basB; of M;. Therefore the links from
other local maps can be referred to the base reference of Bjeto the last position of the vehicle withid; is found. This
last mapB; using the relative transformations between mags equivalent to the relative transformati&& from the base
ng , as done in [15]. Loop hypothesis are created for thoseference of the last local mep; to the local mapB;. This
submaps that are around the last local rivgp considering its last path to close loops is computed for each new hypothesis
uncertainties. These hypotheses are then con rmed by meafidoop closing.



E. Constraining the Loop simulated scenario

The approach to impose loop constraints is fully detailed 5
in the Hierarchical SLAM algorithm [8]. The main idea is
to use a geometric constraint: the composition of all those%0
relative transformations between submaps that composes tl :c;)
loop should be equal to zero (2).

Bi+1 Bj 1

h() xgi, Xgon = Xg ' xg =0 (2

m
Once all links required to close the loops are found, the ym) 00

constrainth(x) = 0 can be applied by means of a constraine
x) PP y Iglg. 3. Synthetic scenario populated with arti cial landiksgreen circles).

optimization prObIem (3) The trajectory ground truth is plotted in balck.

minf (x) = min%(x )P, (X k) ()
conceptual idea of this situation is shown in Fig. 2 and the
This optimization is solved here with an adapted Sequenti@horithm is given in Table I. In this example three local
Quadratic programming method [8]. Its output is the comaps are overlappingVl;, M; and M. Each local map is
strained stochastic mag and its associated covariance matri)ge ned by its associated state vector and covariance matrix
P.. The optimization works better when facing various Ioops§xi P, (X5P)), (Xk; Pk), with respect to its local base
because the higher the number of loops is, the higher thgerenceB;, B; and By. These state vectors contain the
number of geometric constraints will be. Thus, the procegssition of the vehicle and the location of all landmarksteis
performs more accurately, but with higher time consumptiojithin the local map. Some of these features from the three
In order to avoid using redundant loops and optimize thfiaps are overlapping, and they are associated running the
computational cost, it is necessary to select the loopsateat JCBB algorithm. Once, these common landmarks have been
used when imposing constraints. For this purpose, fundehermyssociated, the local update procedure is computed. The bas
graph theory is applied. In particular an adapted spanme® tof this procedure is to consider those common landmarks
is built to de ne the elemental cycles from the adjacencypdra from one map, for instance from;, as the predictions of
belonging to the global stochastic map. This step is eqemtal an EKF prediction stage, while the common features from the
to a Breath First Search (BFS) algorithm, but adapted to thest of overlapping maps are understood as the new mesure-
necessities of the presented system. This approach psovififents. From these predictions and obsnew measurementes the
the minimum possible number of loops that are then usediihovation vector and the EKF gain are calculated and an

the minimization. EKF update is performed (See Table I). Finally, the cormcte
maps are referred back to its original baggsand B;. This
F. Updating Local Maps routine has to be executed for each overlapping local map,

. : .. for instance, in the example on Fig. B1; is rst corrected
After constraining loops, those local maps involved in the P 9. B

loob closing. i.e. sharina common features. are corredibd using the information fromM; and the result is then further
P 9. 1€ 9 ' " updated using the data froM. This double correction leads

to overcon dence, which means that the vehicle could end up

TABLE | completely lost. In order to solve this overcon dence issue
LOCAL MAP UPDATE ALGORITHM landmark measurment process noise is added to the thisaupdat
routine.
Local Map update(My'" = (xq";Pr"), n = i;jK;:: ) IV. EXPERIMENTAL RESULTS
for All mapsdo . .
Mg P = Input map (as arediction) The performance of the me.thod pres_ented in this paper was
Queue = [M;Mj;My;::] tested in a simulated scenario emulating a real environment
DeleteM p from Queue of 50 x 40 meters, with loops from 40 to 100 meters long,
for maps in Queliglo d with 150 landmark Fig. 3). Th It ted
MBo = Map from Queue (as a neabservation) and wi andmarks (see ig. ). e results presente
Lmo=wm, = Data Associatio p, M) here are the mean outputs of 100 different simulations mgryi
LCB: Common landmark with lower uncertainty the noise level and the number of landmarks per submap
MpP, ME° wrt. Lc) lVIoLC,lVIp“ (implying a change in the map size and number of loops).
EKLFUPdaE“?'-Mf Mo Mo M) . All the simulations were conducted on a Pentium Core 2 Duo
endfc'\)"rp °Mg® wrt Bp andBo ) Mp®, Mg® 2.66-GHz. The purpose of our experiments was twofold: 1)
endfor to evaluate the consistency of our approach; 2) to analyse th
o ‘ _ computational cost.
NOTEs:  Data Association solved using JCBB algorithm The experiments demonstrated that our approach performs

w.r.t. stands forwith respect to

consistently. In particular, the accuracy of the local meps
proved compared to the classic Hierarchical SLAM approach.




Fig. 4. Mean error trend for increasing levels of noise.

TABLE Il
COMPUTATIONAL TIME COMPARISON (IN SECONDS FOR100TESTS

H-SLAM approach Proposed Solution
method mean std total| mean std totall Fig. 6. Global map represented as an adjacency graph afteraséoops.
Loop detection 0.12 0.001 8.48/ 0.05 0.001 2.42
Constraining loops| 0.23 0.058 17.75 0.45 0.069 20.82

time when checking loops. This is due to the fact that
local maps' size increases after joining maps, therefore
These results are shown in Fig. 4, where the mean error before the data association becomes more costly.

and after constraining the loops from all the 100 simulaion 2) Our approach is more time demanding when constrain-

with different levels of noise is plotted. This consistemplso ing loops due to the fact that keeping local maps
illustrated in Fig. 5, where we show the vehicle and landrsark independently produces a higher number of loops to be
location and uncertainty from a sequence of submaps. constrained.

Concerning the global level, the results were also positive Finally, our algorithms was tested using the Victoria Park
Fig. 6 presents the stochastic map containing the base refgitaset recorded by Eduardo Nebot et al. [19] at the Auatrali
ence of local maps (as nodes), and the links between thesgire for Field Robotics. This data set describes a path
bases (as arcs). Both the unconstrained and the constraifpﬁ-,gugh an area of around 197m x 93m. This sequence consists
values are shown after closing a few loops, demonstratiag thyf 7247 frames along a trajectory of 4 kilometer length,
the global optimization stage properly corrects the l@rabf yecorded over a time frame of 26 minutes. The data set
the local maps' base references. ~ contains sensor readings from steering and rear-axis wheel

Regarding to the computational cost, the experimeni§gometry) and laser range nder (one 360 degrees scan per
demonstrated that the computational time is slightly imptb second) along with the ground truth position data from GPS.
compared to the Hierarchical SLAM (see Table Il). The meafy; the |aser range data a tree detector function is provided
time for running a single simulation was 28.93 seconds Whegyyether with the dataset. These detected trees are used as
using the classic Hierarchical SLAM approach and 25.Zgatyre landmarks. They usually have a large distance to eac
seconds with our approach. The main differences are: other and can be separated or uniquely identi ed with common

1) The Classic Hierarchical SLAM approach consumegata association techniques.

more time than our approach, because it requires moreThe results obtained after running our approach on the
Victoria Park dataset show promising results, as presented
in Fig. 7. This gure presents the trajectory of the vehicle
according to our technique, which is considerably closati¢o
GPS trajectory. The nal map is also plotted (i.e. the looati
of the landmarks and its uncertainties). This informatien i
plotted on a recent satellite picture of the real park. Even i
some of the trees are not there any more, most of the ones
that still appear in the picture coincide with the ones ested
with our approach.

V. DISCUSSION AND FUTURE WORK

The approach presented in this paper is suitable to map large
scale scenarios. The two main differences with respecterot
methods that use submaps are:

. , . . o 1) Local maps are kept independent during the whole
Fig. 5. Vehicle's and landmarks' estimates and its unceiiesntEvery

time a loop is constrained the uncertainties decrease, antb¢hation of the Sce_nar'o- K_eeplng_ local maps_ln_dependently mean_s_that
landmarks and the vehicle are corrected. their size will not increase. This is shown to be positive
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[1]
(2]
[3]
: . - . - (4]
Fig. 7. Victoria park satellite image with the corrected obhitrajectory and
its uncertainty (in blue), the landmarks' estimated positionyellow) and its  [5]
uncertainties (in red).
6]

2)

in terms of computational cost, i.e. time consumption.
The total time required to build a local map is kept short”
and the total time required to navigate the whole scenario
is also shorter. This decrease on computational demari@
is explained by the fact that covariance matrices are kept
small and so it is the time required to build each submapyg;
Another reason is the fact that the data association is
less costly since less landmarks are involved in the
process. On the contrary, the necessity to check thigy
data association with more than one submap and also
to correct local information introduces extra cost. [11]
Local maps are updated every time a loop is closed.
Although this process adds extra cost to the whole
algorithm, it introduces two signi cant advantages: thé-?
data association algorithm performs more ef ciently;3)
and the mean local map error is improved. The data
association is more ef cient since the uncertainties of
the landmarks within local maps are smaller after beingy)
corrected. Therefore the confusion between very closed
landmarks is simpli ed and also the time consumption i
reduced due to the fact that less iterations are required.
Concerning the error commited when building local
maps, thanks to the local update stage this error is cdi?!
siderably improved. In addition to linearization errors,
further approximations are introduced when neglectirig?]
the correlation between local maps. However, the results
suggest that these approximations are not causing thg
solution to diverge, mainly because submaps are kept
small, thus linearization error effects are also boundeﬂg]

As future work we plan to optimize the loop selection stage
and to simplify the local map update by performing it in a
single EKF step regardless of the number of submaps involved
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