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Abstract— SLAM algorithms do not perform consistent maps
for large areas mainly due to the uncertainties that become
prohibitive when the scenario becomes larger and to the in-
crease of computational cost. The use of local maps has been
demonstrated to be well suited for mapping large environments,
reducing computational cost and improving map consistency.
This paper proposes a technique based on using independent
local maps. Every time a loop is detected, these local maps are
corrected using the information from local maps that overlap
with them. Meanwhile a global stochastic map is kept through
loop detection and minimization as it is done in the classical
Hierarchical SLAM approach. This global level contains the
relative transformations between local maps, which are updated
once a new loop is detected. In addition, the information within
the local maps is also corrected, maintaining always each local
map separately. This approach requires robust data association
algorithms, for instance, an adapted version of the JCBB algo-
rithm. Experimental results show that our approach is able to
obtain large maps areas with high accuracy.

Index Terms— SLAM, submap, large scale, data association

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) also
known as Concurrent Mapping and Localization (CML) is
one of the fundamental challenges of robotics. The goal of
SLAM is to build a map of an unknown environment while
simultaneously determining the location of the robot within
this map [1]. In this scenario, the vehicle has a known kine-
matic model and it is moving through an unknown environ-
ment, which is populated with arti�cial or natural landmarks
measured by the on-board sensors of the vehicle. The SLAM
problem involves �nding appropriate representation for both
the observation and the motion models, which is generally
performed by computing its prior and posterior distributions
using probabilistic algorithms, for instance Kalman Filters
(KF), Particle Filters (PF) [2] and Expectation Maximization
(EM) [3]. The main reason for the increasing popularity of
these probabilistic techniques is the fact that robot mapping
is characterized by uncertainty and sensor noise. Therefore,
probabilistic algorithms tackle the problem by modeling ex-
plicitly different sources of noise and their effects on the
measurements [4].

The most known SLAM approach is the Extended Kalman
Filter SLAM (EKF-SLAM) [5]. It is based on representing the
vehicle's pose and the location of a set of environment features
in a joint state vector estimated and updated by the Extended
Kalman Filter. The EKF provides a suboptimal solution due
to the approximations introduced when linearizing the models,
which may result in inconsistencies [6], and also due to the
assumption that the uncertainties associated to the motionand
measurement processes are only additional white Gaussian

noise. In addition, one of the main drawbacks of the EKF
implementation is the fact that for long duration missions,
the number of landmarks increases and, eventually, computer
resources will not suf�ce to update the map in real-time. This
scaling problem arises because each landmark is correlatedto
all other landmarks, giving a memory complexity ofO(n2)
and a time complexity ofO(n2) per step, wheren is the
total number of features stored in the map. The correlation
appears since the observation of a new landmark is obtained
with a sensor mounted on the moving vehicle and thus the
landmark location is correlated with the vehicle location and
the other landmarks of the map. This correlation is a key point
for the long-term convergence of the algorithm, and needs to
be maintained during all the mission.

Using submaps both limitations can be addressed at the
same time (i.e. linearization errors and rise on computational
cost). Therefore, using small maps to later on build a bigger
one improves the consistency of the EKF-SLAM [6]. Limiting
the size of a submap, by bounding the total number of
landmarks or by �xing the maximum distance traveled by a
vehicle, maintains the uncertainties of the submap and the lin-
earization errors small. Furthermore, having small uncertainty
matrices improve the consistency of the data association meth-
ods. For instance, in the Joint Compatibility Branch and Bound
(JCBB) algorithm, the smaller the covariance matrix values
are, the better the performance is [7]. Another advantage of
working with small maps is that the amount of data involved
in the EKF-SLAM is kept small, thus computational cost is
reduced.

The main contribution of this paper is a novel technique
that uses submaps as in a Hierarchical SLAM [8], but keeps
local maps independently. The general idea of our approach
is as follows. The vehicle navigates and builds local maps.
Meanwhile, a global stochastic map containing the relative
transformations between submaps is built. Once a loop is
closed, these relative transformations are corrected by using
loop closure constraints, as it is done in the Hierarchical
SLAM approach. At this point, those maps that compose the
loop are also updated, but kept separately. Therefore, map
joining is not performed. The vehicle continues its navigation
building local maps until a new loop is closed. To �nd a
loop closing situation, the information from the corrected
local maps is used. In addition, the data association process
is simpli�ed since the feature's information was previously
corrected and the uncertainty was reduced.

This new technique has been implemented, tested with
simulated scenarios, and compared with other EKF based
techniques. The experiments show a reduction of the effectsof
the linearization error and also a more precise reconstruction of
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the map since the drift suffered in shorter distances is smaller,
and the data association can be more robustly solved.

This paper is organized as follows. Related work is brie�y
described in Section II, especially those approaches that deal
with large scale scenarios. Section III concerns the proposed
solution, describing the steps involved in the process. Section
IV summarizes the experimental results obtained. The paper
ends with the conclusions and future work in Section V.

II. RELATED WORK

In the last decades, several works have tackled the issues
associated with SLAM in large areas, such as the compu-
tational complexity and the inconsistencies caused by the
linearization errors. Regarding the computational complexity
some techniques delay the global update stage after several
observations, reducing signi�cantly the cost. For instance, the
Compressed Extended Kalman Filter algorithm (CEKF) [9]
or the Postponement approach [10], in which the global map
update cost isO(n2).

On the other hand, the problem of map consistency pro-
duced by linearization errors motivated algorithms such asthe
Unscented Kalman Filter (UKF) [11], which achieves better
consistency addressing the approximation issues of the EKF,
but increases the computational complexity.

Another set of approaches has been based on the use of the
Information Filter. An ef�cient example of this group is the
Treemap algorithm [12]. It requiresO(log n) time per step
to recover a part of the state andO(n) to recover the whole
map. However, these techniques based on information �lters
suffer from the dif�culty to perform data association sinceno
covaraince matrix is involved.

More recent techniques based on submapping face the
problems of consistency and computational complexity, but
they require complete independency between maps, or what
is the same, no information is shared between neighboring
maps. For instance, the Decoupled Stochastic Map [13] works
with submaps but it has dif�culties due to the fact that
its absolute submaps are not statistically independent andit
requires approximations to solve these dependencies, introduc-
ing inconsitency in the map. The Constrained Local Submap
Filter (CLSF) [14] or Local Map Joining (LMJ) [15] produce
ef�cient global maps by consistently combining completely
independent local maps, with a total cost ofO(n2). The Divide
and Conquer SLAM (DC) [18] is capable to recover the global
map in approximatelyO(n) time. The main limitation of the
DC approach is that the time increases considerably with the
overlapping information between local maps. More ef�cient
techniques, such as the Constant Time SLAM (CTS) [16],
the Atlas approach [17], and the Hierarchical SLAM [8],
store the link between local maps by means of an adjacency
graph. The CTS and the Atlas do not impose loop consistency
in the graph, obtaining a suboptimal global map. Instead,
the most precise path along the graph is computed to �nd
the location of local maps in a global reference frame. The
Hierarchical SLAM approach can perform consistent global
maps by imposing loop constraints. However, the common
information shared by different maps is discarded, or only used

when joining maps. This way only the joint map information
is kept, instead of that from the individual maps. The method
we propose in this paper takes advantage of the adjacency
graph representation from the CTS and Atlas, but it uses the
loop constraint optimization as in the Hierarchical SLAM.
In addition, the independent local maps are kept at a small
size, while being corrected with the local information from
overlapping submaps.

III. PROPOSED SOLUTION

The approach presented in this paper is similar to that of the
Hierarchical SLAM. Once a loop is detected, the information
shared by more than one submap is used to correct each
individual local map separately. The assumption that enough
overlapping exists between those maps that close the loop is
made. Taking advantage of the overlapping, features that are
common in several submaps are updated. These common land-
marks from other submaps are �rst referred with respect to the
last position of the local map to be updated. Afterwards, they
are considered as new observations, while the existing onesare
used to perform a EKF prediction. Using the predicted features
and the observed ones, the innovation vector is estimated and
an EKF update is computed. Therefore, the location of the
landmarks within the local map is corrected. This correction
is conducted for each of the maps with common features. Each
local map is kept as an independent local map, allowing to use
its local information in further loops. With this approach,the
information from various submaps is used when correcting
local maps, and the detection of loops takes pro�t of the
higher precision of the corrected local maps. A diagram of
the complete process is shown in Fig. 1.

A. Local Map Building

A local map is built running a basic EKF SLAM algo-
rithm [15]. Every local map is initialized with its state vector
xk at zero, and its associated uncertaintyPk = 0. The
local map building process is stopped when the number of
landmarks in the current local map exceeds a threshold, when
the distance visited within this local map is long enough
according to a threshold, or when the uncertainties become
higher than a certain acceptance limit. The output of this
algorithm is the local mapM B i

F i
(1) with respect to its base

referenceB i , which contains the position of the vehicle and
the location of then featuresFi observed within this map,
and its associated unceratintyPB i

F i
.

M B i
F i

= ( xB i
F i

; PB i
F i

) : Fi = f B i ; Fi 1; Fi 2; :::; Fin g (1)

B. Global Stochastic Map Building

The relative transformationx ij = xB i
B j

= ( x ij ; yij ; � ij )t

between two consecutive submapsM i and M j is stored in
a relative stochastic map� u = ( bxu ; bPu ) (similar to the
Hierarchical SLAM approach [8]), where thebxu is a vector
containing all relative transformations between local maps, and
bPu the uncertainties associated to these transformations. The
subindexu stands for unconstrained, since at this point no
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Fig. 1. Block diagram detailing the Hierarchical SLAM process adapted to
the approach presented in this paper.

loop closing constraints have been applied. This will be done
in further steps when imposing loop constraints (Section III.D).

C. Loop Detection

When the vehicle is moving through a scenario, a sequence
of local maps is built. Every time a local mapM j is completed,
the possibility of closing a loop with some other previous
local mapsM i , where i = 1 :::j , is checked. The data from
other local maps can be referred to the base reference of the
last mapB j using the relative transformations between maps
xB j

B i
, as done in [15]. Loop hypothesis are created for those

submaps that are around the last local mapM j , considering its
uncertainties. These hypotheses are then con�rmed by means

Fig. 2. Schematic representation of a loop closing situation, where three
mapsM i , M j andM k are overlapping and closing two different loops. The
grey ellipse contains three landmarks that may cause confusion.

of the data association algorithm JCBB, which determines if
any landmark have been revisited. In addition, the result of
the JCBB is veri�ed by checking that only one feature from a
local mapM i is associated to a single feature from a local map
M j . This extra check is required, since features closed by the
boundaries of the local maps may cause confusion, as depicted
in Fig. 2. If a feature is associated to more than one landmark
from the other map, its neighboring information is then taken
into account (as well as its joint mahalanobis distance). This
way, the right associate is selected and the others are discarded.
After this check, the loop hypothesis is accepted and therefore
the loop constraints are imposed (Section III.D). It may
happen, and it is desirable, that more than one submap overlap
with the last submap. In this way, more than one hypothesis of
loop is accepted. Assuming that we can have high overlapping
between consecutive submaps, the detection of loops is not
run immediately after closing a loop. The system waits until
two new local maps have been build, in order to avoid loop
detection at the end of every submap.

D. Computing last links to close loops

The global stochastic map� u does not contain the last
link that closes the loopxB j

B i
. Hence, this last link has to

be computed by �rst solving robustly the data association
between the local mapM i � 1 and the last mapM j . A possible
scenario where this step is required is shown in Fig. 2. The
data from one map, for instanceM i is moved and referred
with respect to the baseB j of M j . Therefore the links from
B j to the last position of the vehicle withinM i is found. This
is equivalent to the relative transformationxB j

B i
from the base

reference of the last local mapB j to the local mapB i . This
last path to close loops is computed for each new hypothesis
of loop closing.
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E. Constraining the Loop

The approach to impose loop constraints is fully detailed
in the Hierarchical SLAM algorithm [8]. The main idea is
to use a geometric constraint: the composition of all those
relative transformations between submaps that composes the
loop should be equal to zero (2).

h(x) � xB i
B i +1

� xB i +1
B i +2

� ::: � xB j � 1

B j
� xB j

B i
= 0 (2)

Once all links required to close the loops are found, the
constrainth(x) = 0 can be applied by means of a constrained
optimization problem (3).

minf (x) = min
1
2

(x � bxu )t P � 1
u (x � bxu ) (3)

This optimization is solved here with an adapted Sequential
Quadratic programming method [8]. Its output is the con-
strained stochastic map� c and its associated covariance matrix
Pc. The optimization works better when facing various loops,
because the higher the number of loops is, the higher the
number of geometric constraints will be. Thus, the process
performs more accurately, but with higher time consumption.

In order to avoid using redundant loops and optimize the
computational cost, it is necessary to select the loops thatare
used when imposing constraints. For this purpose, fundamental
graph theory is applied. In particular an adapted spanning tree
is built to de�ne the elemental cycles from the adjacency graph
belonging to the global stochastic map. This step is equivalent
to a Breath First Search (BFS) algorithm, but adapted to the
necessities of the presented system. This approach provides
the minimum possible number of loops that are then used in
the minimization.

F. Updating Local Maps

After constraining loops, those local maps involved in the
loop closing, i.e. sharing common features, are corrected.The

TABLE I

LOCAL MAP UPDATE ALGORITHM

Local Map update(M B n
n = ( xB n

n ; P B n
n ), n = i; j; k; ::: )

for All maps do
M

B p
p = Input map (as aprediction)

Queue = [ M i ; M j ; M k ; :::]
DeleteM p from Queue
for maps in Queuedo

M B o
o = Map from Queue (as a newobservation)

L M o = M p = Data Association(M p , M o )
L c = Common landmark with lower uncertainty
M

B p
p , M B o

o w.r.t. L c ) M L c
o , M L c

p

EKFupdate(L M o = M p , M L c
o , M L c

p )

M L c
p , M L c

o w.r.t. B p andB o ) M
B p
p , M B o

o
endfor

endfor

NOTEs: Data Association solved using JCBB algorithm
w.r.t. stands forwith respect to

Fig. 3. Synthetic scenario populated with arti�cial landmarks (green circles).
The trajectory ground truth is plotted in balck.

conceptual idea of this situation is shown in Fig. 2 and the
algorithm is given in Table I. In this example three local
maps are overlapping,M i , M j and M k . Each local map is
de�ned by its associated state vector and covariance matrix,
(x i ; Pi ), (x j ; Pj ), (xk ; Pk ), with respect to its local base
referenceB i , B j and Bk . These state vectors contain the
position of the vehicle and the location of all landmarks visited
within the local map. Some of these features from the three
maps are overlapping, and they are associated running the
JCBB algorithm. Once, these common landmarks have been
associated, the local update procedure is computed. The basis
of this procedure is to consider those common landmarks
from one map, for instance fromM i , as the predictions of
an EKF prediction stage, while the common features from the
rest of overlapping maps are understood as the new mesure-
ments. From these predictions and obsnew measurementes the
innovation vector and the EKF gain are calculated and an
EKF update is performed (See Table I). Finally, the corrected
maps are referred back to its original basesB i and B j . This
routine has to be executed for each overlapping local map,
for instance, in the example on Fig. 2,M i is �rst corrected
using the information fromM j and the result is then further
updated using the data fromM k . This double correction leads
to overcon�dence, which means that the vehicle could end up
completely lost. In order to solve this overcon�dence issue,
landmark measurment process noise is added to the this update
routine.

IV. EXPERIMENTAL RESULTS

The performance of the method presented in this paper was
tested in a simulated scenario emulating a real environment
of 50 x 40 meters, with loops from 40 to 100 meters long,
and with 150 landmarks (see Fig. 3). The results presented
here are the mean outputs of 100 different simulations varying
the noise level and the number of landmarks per submap
(implying a change in the map size and number of loops).
All the simulations were conducted on a Pentium Core 2 Duo
2.66-GHz. The purpose of our experiments was twofold: 1)
to evaluate the consistency of our approach; 2) to analyse the
computational cost.

The experiments demonstrated that our approach performs
consistently. In particular, the accuracy of the local mapsim-
proved compared to the classic Hierarchical SLAM approach.
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Fig. 4. Mean error trend for increasing levels of noise.

TABLE II

COMPUTATIONAL TIME COMPARISON (IN SECONDS) FOR 100 TESTS.

H-SLAM approach Proposed Solution
method mean std total mean std total
Loop detection 0.12 0.001 8.48 0.05 0.001 2.42
Constraining loops 0.23 0.058 17.75 0.45 0.069 20.82

These results are shown in Fig. 4, where the mean error before
and after constraining the loops from all the 100 simulations
with different levels of noise is plotted. This consistencyis also
illustrated in Fig. 5, where we show the vehicle and landmarks
location and uncertainty from a sequence of submaps.

Concerning the global level, the results were also positive.
Fig. 6 presents the stochastic map containing the base refer-
ence of local maps (as nodes), and the links between these
bases (as arcs). Both the unconstrained and the constrained
values are shown after closing a few loops, demonstrating that
the global optimization stage properly corrects the location of
the local maps' base references.

Regarding to the computational cost, the experiments
demonstrated that the computational time is slightly improved
compared to the Hierarchical SLAM (see Table II). The mean
time for running a single simulation was 28.93 seconds when
using the classic Hierarchical SLAM approach and 25.25
seconds with our approach. The main differences are:

1) The Classic Hierarchical SLAM approach consumes
more time than our approach, because it requires more

Fig. 5. Vehicle's and landmarks' estimates and its uncertainties. Every
time a loop is constrained the uncertainties decrease, and the location of the
landmarks and the vehicle are corrected.

Fig. 6. Global map represented as an adjacency graph after several loops.

time when checking loops. This is due to the fact that
local maps' size increases after joining maps, therefore
the data association becomes more costly.

2) Our approach is more time demanding when constrain-
ing loops due to the fact that keeping local maps
independently produces a higher number of loops to be
constrained.

Finally, our algorithms was tested using the Victoria Park
dataset recorded by Eduardo Nebot et al. [19] at the Australian
Centre for Field Robotics. This data set describes a path
through an area of around 197m x 93m. This sequence consists
of 7247 frames along a trajectory of 4 kilometer length,
recorded over a time frame of 26 minutes. The data set
contains sensor readings from steering and rear-axis wheel
(odometry) and laser range �nder (one 360 degrees scan per
second) along with the ground truth position data from GPS.
For the laser range data a tree detector function is provided
together with the dataset. These detected trees are used as
feature landmarks. They usually have a large distance to each
other and can be separated or uniquely identi�ed with common
data association techniques.

The results obtained after running our approach on the
Victoria Park dataset show promising results, as presented
in Fig. 7. This �gure presents the trajectory of the vehicle
according to our technique, which is considerably closed tothe
GPS trajectory. The �nal map is also plotted (i.e. the location
of the landmarks and its uncertainties). This information is
plotted on a recent satellite picture of the real park. Even if
some of the trees are not there any more, most of the ones
that still appear in the picture coincide with the ones estimated
with our approach.

V. DISCUSSION AND FUTURE WORK

The approach presented in this paper is suitable to map large
scale scenarios. The two main differences with respect to other
methods that use submaps are:

1) Local maps are kept independent during the whole
scenario. Keeping local maps independently means that
their size will not increase. This is shown to be positive
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Fig. 7. Victoria park satellite image with the corrected vehicle trajectory and
its uncertainty (in blue), the landmarks' estimated position(in yellow) and its
uncertainties (in red).

in terms of computational cost, i.e. time consumption.
The total time required to build a local map is kept short
and the total time required to navigate the whole scenario
is also shorter. This decrease on computational demand
is explained by the fact that covariance matrices are kept
small and so it is the time required to build each submap.
Another reason is the fact that the data association is
less costly since less landmarks are involved in the
process. On the contrary, the necessity to check this
data association with more than one submap and also
to correct local information introduces extra cost.

2) Local maps are updated every time a loop is closed.
Although this process adds extra cost to the whole
algorithm, it introduces two signi�cant advantages: the
data association algorithm performs more ef�ciently
and the mean local map error is improved. The data
association is more ef�cient since the uncertainties of
the landmarks within local maps are smaller after being
corrected. Therefore the confusion between very closed
landmarks is simpli�ed and also the time consumption is
reduced due to the fact that less iterations are required.
Concerning the error commited when building local
maps, thanks to the local update stage this error is con-
siderably improved. In addition to linearization errors,
further approximations are introduced when neglecting
the correlation between local maps. However, the results
suggest that these approximations are not causing the
solution to diverge, mainly because submaps are kept
small, thus linearization error effects are also bounded.

As future work we plan to optimize the loop selection stage
and to simplify the local map update by performing it in a
single EKF step regardless of the number of submaps involved.
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